Diabetic nephropathy represents a major complication of diabetes mellitus (DM), and the origin of this complication is poorly understood. Vasopressin (VP), which is elevated in type I and type II DM, has been shown to increase glomerular filtration rate in normal rats and to contribute to progression of chronic renal failure in 5͞6 nephrectomized rats. The present study was thus designed to evaluate whether VP contributes to the renal disorders of DM. Renal function was compared in Brattleboro rats with diabetes insipidus (DI) lacking VP and in normal Long-Evans (LE) rats, with or without streptozotocin-induced DM. Blood and urine were collected after 2 and 4 weeks of DM, and creatinine clearance, urinary glucose and albumin excretion, and kidney weight were measured. Plasma glucose increased 3-fold in DM rats of both strains, but glucose excretion was Ϸ40% lower in DI-DM than in LE-DM, suggesting less intense metabolic disorders. Creatinine clearance increased significantly in LE-DM (P < 0.01) but failed to increase in DI-DM. Urinary albumin excretion more than doubled in LE-DM but rose by only 34% in DI-DM rats (P < 0.05). Kidney hypertrophy was also less intense in DI-DM than in LE-DM (P < 0.001). These results suggest that VP plays a critical role in diabetic hyperfiltration and albuminuria induced by DM. This hormone thus seems to be an additional risk factor for diabetic nephropathy and, thus, a potential target for prevention and͞or therapeutic intervention.One of the major complications of diabetes mellitus (DM) is a progressive nephropathy that develops in about one-third of patients within 10-20 years after the onset of the disease and leads in most cases to end stage renal failure (1). This represents a major problem of public health because a large fraction of dialysis requirements is attributable to DM nephropathy. Although a number of studies have already been devoted to this problem, the factors contributing to diabetic nephropathy are not yet fully identified.A characteristic feature observed in diabetic patients is an elevation of plasma vasopressin (VP), well documented in both type I and type II DM (2-5). This elevation also occurs in animal models of DM, whether experimental or genetically determined (6, 7). Several studies have investigated the possible factors responsible for this increase in VP secretion (3,6,8,9). But they did not succeed in identifying the responsible stimulus for this increase. They revealed a resetting of the osmostat in diabetics but concluded that hyperglycemia was not responsible for this resetting because increasing plasma glucose and osmolality by intravenous infusion of hypertonic dextrose produced no increase in plasma vasopressin in diabetics or in healthy controls (8).Little attention has been given to the possible functional consequences of the rise in plasma VP. To our knowledge, the possible contribution of VP to the renal complications of DM has never been investigated in spite of several previous findings suggesting that this hormone represents a ...
Pendrin (Pds; Slc26A4) is a new anion exchanger that is believed to mediate apical Cl(-)/HCO(3)(-) exchange in type B and non-A-non-B intercalated cells of the connecting tubule and cortical collecting duct. Recently, it has been proposed that this transporter may be involved in NaCl balance and blood pressure regulation in addition to its participation in the regulation of acid-base status. The purpose of our study was to determine the regulation of Pds protein abundance during chronic changes in chloride balance. Rats were subjected to either NaCl, NH(4)Cl, NaHCO(3), KCl, or KHCO(3) loading for 6 days or to a low-NaCl diet or chronic furosemide administration. Pds protein abundance was estimated by semiquantitative immunoblotting in renal membrane fractions isolated from the cortex of treated and control rats. We observed a consistent inverse relationship between Pds expression and diet-induced changes in chloride excretion independent of the administered cation. Conversely, NaCl depletion induced by furosemide was associated with increased Pds expression. We conclude that Pds expression is specifically regulated in response to changes in chloride balance.
Urea, the major end product of protein metabolism in mammals, is the most abundant solute in the urine. Urea excretion is thought to result from filtration curtailed by some passive reabsorbtion along the nephron. This reabsorption is markedly enhanced by vasopressin and slow urinary flow rate (V), the fraction of filtered urea excreted in the urine (FEurea) falling from approximately 60% at high V to only approximately 20% at low V. In concentrated urine, normal urea excretion can be maintained only if urea filtration is elevated. This can be achieved by increasing plasma urea concentration (Purea) and/or GFR. We have shown that both parameters do increase when normal rats are submitted to chronic alterations in the water intake/vasopressin axis within the normal range of physiologic regulation. This situation is very similar to that observed after alterations in protein intake. In both cases more urea needs to be filtered, either because more of it has to be excreted, or because the efficiency of its excretion is reduced. A common mechanism is proposed to explain the rise in GFR observed in the two situations. In summary, our studies demonstrate that the antidiuretic effects of vasopressin are responsible for a significant elevation of GFR. This GFR adaptation limits the rise in Purea, a favorable effect because urea is not as harmless as usually thought. However, this hyperfiltration might have deleterious consequences in diseased kidneys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.