BackgroundAlzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia in the world. Microglia are the innate immune cells of CNS, their proliferation, activation and survival in pathologic and healthy brain have previously been shown to be highly dependent on CSF1R.MethodsHere we investigate the impact of such receptor on AD etiology and microglia. We deleted CSF1R using Cre/Lox system, the knock-out (KO) is restricted to microglia in the APP/PS1 mouse model. We induced the knock-out at 3-month-old, before plaque formation and evaluated both 6 and 8-month-old groups of mice.ResultsOur findings demonstrated that CSF1R KO did not impair microglial survival and proliferation at 6 and 8 months of age in APP cKO compared to their littermate controls groups APPSwe/PS1. We have also shown that cognitive decline is delayed in CSF1R-deleted mice. Ameliorations of AD etiology is associated with a decrease in plaque volume in cortex and hippocampus area. A compensating system seems to take place following the knock-out, since TREM2/β-Catenin and IL-34 expression are significantly increased. Such a compensatory mechanism may promote microglial survival and phagocytosis of Aβ in the brain.ConclusionsOur results provide new insights on the role of CSF1R in microglia and how it interacts with the TREM2/β-Catenin and IL-34 system to clear Aβ and ameliorates the physiopathology of AD.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia in the world. Microglia are the innate immune cells of CNS, their proliferation, activation and survival in pathologic and healthy brain have previously been shown to be highly dependent on CSF1R. Methods: Here we investigate the impact of such receptor on AD etiology and microglia. We deleted CSF1R using Cre/Lox system, the knock-out (KO) is restricted to microglia in the APP/PS1 mouse model. We induced the knock-out at 3-month-old, before plaque formation and evaluated both 6 and 8-month-old groups of mice. Results: Our findings demonstrated that CSF1R KO did not impair microglial survival and proliferation at 6 and 8 months of age in APP cKO compared to their littermate controls groups APPSwe/PS1. We have also shown that cognitive decline is delayed in CSF1R-deleted mice. Ameliorations of AD etiology is associated with a decrease in plaque volume in cortex and hippocampus area. A compensating system seems to take place following the knock-out, since TREM2/β-Catenin and IL-34 expression are significantly increased. Such a compensatory mechanism may promote microglial survival and phagocytosis of Aβ in the brain. Conclusions: Our results provide new insights on the role of CSF1R in microglia and how it interacts with the TREM2/β-Catenin and IL-34 system to clear Aβ and ameliorates the physiopathology of AD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.