We previously identified and characterized an intramolecular trans-sialidase (IT-sialidase) in the gut symbiont Ruminococcus gnavus ATCC 29149, which is associated to the ability of the strain to grow on mucins. In this work we have obtained and analyzed the draft genome sequence of another R. gnavus mucin-degrader, ATCC 35913, isolated from a healthy individual. Transcriptomics analyses of both ATCC 29149 and ATCC 35913 strains confirmed that the strategy utilized by R. gnavus for mucin-degradation is focused on the utilization of terminal mucin glycans. R. gnavus ATCC 35913 also encodes a predicted IT-sialidase and harbors a Nan cluster dedicated to sialic acid utilization. We showed that the Nan cluster was upregulated when the strains were grown in presence of mucin. In addition we demonstrated that both R. gnavus strains were able to grow on 2,7-anyhydro-Neu5Ac, the IT-sialidase transglycosylation product, as a sole carbon source. Taken together these data further support the hypothesis that IT-sialidase expressing gut microbes, provide commensal bacteria such as R. gnavus with a nutritional competitive advantage, by accessing and transforming a source of nutrient to their own benefit.
Liver cells are an essential target for drug delivery in many diseases. The hepatocytes express the asialoglycoprotein receptor (ASGPR), which promotes specific uptake by means of N-acetylgalactosamine (GalNAc) recognition. In this work, we designed two different chemical architectures to treat Wilson's disease by intracellular copper chelation. Two glycoconjugates functionalized with three or four GalNAc units each were shown to enter hepatic cells and chelate copper. Here, we studied two series of compounds derived from these glycoconjugates to find key parameters for the targeting of human hepatocytes. Efficient cellular uptake was demonstrated by flow cytometry using HepG2 human heptic cells that express the human oligomeric ASGPR. Dissociation constants in the nanomolar range showed efficient multivalent interactions with the receptor. Both architectures were therefore concluded to be able to compete with endogeneous asialoglycoproteins and serve as good vehicles for drug delivery in hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.