Insulin-degrading enzyme (IDE) is a zinc metalloprotease that hydrolyzes amyloid- (A) and insulin, which are peptides associated with Alzheimer disease (AD) and diabetes, respectively. Our previous structural analysis of substratebound human 113-kDa IDE reveals that the N-and C-terminal domains of IDE, IDE-N and IDE-C, make substantial contact to form an enclosed catalytic chamber to entrap its substrates. Furthermore, IDE undergoes a switch between the closed and open conformations for catalysis. Here we report a substrate-free IDE structure in its closed conformation, revealing the molecular details of the active conformation of the catalytic site of IDE and new insights as to how the closed conformation of IDE may be kept in its resting, inactive conformation. We also show that A is degraded more efficiently by IDE carrying destabilizing mutations at the interface of IDE-N and IDE-C (D426C and K899C), resulting in an increase in V max with only minimal changes to K m . Because ATP is known to activate the ability of IDE to degrade short peptides, we investigated the interaction between ATP and activating mutations. We found that these mutations rendered IDE less sensitive to ATP activation, suggesting that ATP might facilitate the transition from the closed state to the open conformation. Consistent with this notion, we found that ATP induced an increase in hydrodynamic radius, a shift in electrophoretic mobility, and changes in secondary structure. Together, our results highlight the importance of the closed conformation for regulating the activity of IDE and provide new molecular details that will facilitate the development of activators and inhibitors of IDE.
Insulin-degrading enzyme (IDE) is a ubiquitous zinc-metalloprotease that hydrolyzes several pathophysiologically relevant peptides, including insulin and the amyloid -protein (A). IDE is inhibited irreversibly by compounds that covalently modify cysteine residues, a mechanism that could be operative in the etiology of type 2 diabetes mellitus (DM2) or Alzheimer's disease (AD). However, despite prior investigation, the molecular basis underlying the sensitivity of IDE to thiol-alkylating agents has not been elucidated. To address this topic, we conducted a comprehensive mutational analysis of the 13 cysteine residues within IDE. Our analysis implicates C178, C812, and C819 as the principal residues conferring thiol sensitivity. The involvement of C812 and C819, residues quite distant from the catalytic zinc atom, provides functional evidence that the active site of IDE comprises two separate domains that are operational only in close apposition. Structural analysis and other evidence predict that alkylation of C812 and C819 disrupts substrate binding, whereas alkylation of C178 interferes with the apposition of active-site domains and subtly repositions zinc-binding residues. Unexpectedly, alkylation of C590 was found to activate hydrolysis of A significantly, while having no effect on insulin, demonstrating that chemical modulation of IDE can be both bidirectional and highly substrate selective. Our findings resolve a long-standing riddle about the basic enzymology of IDE with important implications for the etiology of DM2 and AD. Moreover, this work uncovers key details about the mechanistic basis of the unusual substrate selectivity of IDE that may aid the development of pharmacological agents or IDE mutants with therapeutic value.Alzheimer's disease ͉ amyloid -protein ͉ insulin ͉ type 2 diabetes mellitus
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.