Clinically used botulinum neurotoxins (BoNTs) are natural products of Clostridium botulinum. A novel, recombinant BoNT type A1 (rBoNT/A1; IPN10260) has been synthesized using the native amino acid sequence expressed in Escherichia coli and has previously been characterized in vitro and ex vivo. Here, we aimed to characterize rBoNT/A1 in vivo and evaluate its effects on skeletal muscle. The properties of rBoNT/A1 following single, intramuscular administration were evaluated in the mouse and rat digit abduction score (DAS) assays and compared with those of natural BoNT/A1 (nBoNT/A1). rBoNT/A1‐injected tibialis anterior was assessed in the in situ muscle force test in rats. rBoNT/A1‐injected gastrocnemius lateralis (GL) muscle was assessed in the compound muscle action potential (CMAP) test in rats. The rBoNT/A1‐injected GL muscle was evaluated for muscle weight, volume, myofiber composition and immunohistochemical detection of cleaved SNAP25 (c‐SNAP25). Results showed that rBoNT/A1 and nBoNT/A1 were equipotent and had similar onset and duration of action in both mouse and rat DAS assays. rBoNT/A1 caused a dose‐dependent inhibition of muscle force and a rapid long‐lasting reduction in CMAP amplitude that lasted for at least 30 days. Dose‐dependent reductions in GL weight and volume and increases in myofiber atrophy were accompanied by immunohistochemical detection of c‐SNAP25. Overall, rBoNT/A1 and nBoNT/A1 exhibited similar properties following intramuscular administration. rBoNT/A1 inhibited motoneurons neurotransmitter release, which was robust, long‐lasting, and accompanied by cleavage of SNAP25. rBoNT/A1 is a useful tool molecule for comparison with current natural and future modified recombinant neurotoxins products.
The synthesis, structure-activity relationships, and biological properties of a novel series of potent and selective phosphodiesterase type 4 (PDE4) inhibitors are described. These new aminodiazepinoindoles displayed in vitro PDE4 activity with submicromolar IC(50) values and PDE4 selectivity vs PDE1, -3, and -5. Specifically, one compound (CI-1044, 10e) provided efficient in vitro inhibition of TNFalpha release from hPBMC and hWB with IC(50) values of 0.34 and 0.84 microM, respectively. This compound was found to exhibit potent in vivo activity in antigen-induced eosinophil recruitment in Brown-Norway rats (ED(50) = 3.2 mg/kg po) and in production of TNFalpha in Wistar rats (ED(50) = 2.8 mg/kg po). No emetic side effects at therapeutic doses were observed in ferrets.
Eleven drugs were examined for their ability to inhibit sigma and phencyclidine (PCP) receptor binding, as labelled by (+)[3H]-R-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP), [3H]ditolylguanidine (DTG), (+)[3H]N-allylnormetazocine (NANM) and [3H]1-(1-(2-thienyl)cyclohexyl)piperidine (TCP), in membrane preparations from whole rat brain. The same drugs were studied for their effects under a fixed-ratio (FR) schedule of food reinforcement in rats. The relative potency order of the drugs for decreasing FR responding was: haloperidol greater than (+)-3-PPP greater than (-)NANM greater than BMY 14802 greater than PCP greater than (+)NANM greater than DTG greater than rimcazole greater than JO 1783 greater than JO1784 greater than (-)butaclamol. The binding affinities of all 11 drugs for either the [3H]DTG, (+)[3H]-3-PPP, (+)[3H]NANM or [3H]TCP site did not correlate significantly with the potencies of the same drugs for decreasing FR behavior. Rimcazole, (+)-3-PPP and haloperidol, at behaviorally inactive doses, were studied for their effects as antagonists of the rate-decreasing effects of JO 1784, DTG and (+)NANM: rimcazole attenuated the effects of DTG and (+)NANM but not JO 1784; (+)-3-PPP attenuated the effects of (+)NANM but not JO 1784 and DTG; and haloperidol was devoid of antagonistic actions. Moreover, BMY 14802 did not attenuate the rate-decreasing effects of (+)-3-PPP. These results further indicate that it is difficult to distinguish between purported sigma agonist and antagonist drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.