The purpose of this study is to demonstrate feasibility of an integrated wastewater algae-to-biocrude process that can sustainably cultivate algal biomass for biofuel production. This process used pilot-scale algal cultivation ponds fed with municipal wastewater as the nutrient source. The open ponds were self-inoculated from the wastewater source, resulting in a mixed-culture microalgal community with distinct differences compared to laboratory-maintained and fertilized monocultures: 29.0% dry weight (dw) ash, 48.9% ash-free dry weight (afdw) carbon, 37.5% afdw oxygen, and 14.0% afdw lipid. The harvested algae was processed using hydrothermal liquefaction at 350 °C (autogenous pressures up to 2000 psig) for 1 h using 3 g of freeze-dried algae and 50 mL of water. The yield of biocrude was 44.5 ± 4.7% afdw, with an elemental weight percent composition of 78.7% carbon, 10.1% hydrogen, 4.4% nitrogen, and 5.5% oxygen and an energy content of 39 MJ/kg. Hydrothermal processing also resulted in the formation of 18.4 ± 4.6% afdw aqueous co-products (ACPs) and 45.0 ± 5.9% dw solid biochar. The ACPs contained 4550 ± 460 mg L −1 organic carbon, 1640 ± 250 mg L −1 total nitrogen, and 3.5 mg L −1 total phosphorus. The solid biochar product contained >20% dw carbon with an energy density between 8 and 10 MJ kg −1 . This study is the first hydrothermal liquefaction paper of wastewater-derived microalgae. The municipal wastewater matrix and resultant mixed-culture biomass significantly influenced liquefaction product distribution, yielding a higher proportion of biochar, which may be a valuable co-product. This paper explores the potential for wastewater-fed algal systems integrated with hydrothermal liquefaction, which together overcome challenges identified by the 2012 National Research Council's report on algal biofuel sustainability.
Resource demand analyses indicate that algal biodiesel production would require unsustainable amounts of freshwater and fertilizer supplies. Alternatively, municipal wastewater effluent can be used, but this restricts production of algae to areas near wastewater treatment plants (WWTPs), and to date, there has been no geospatial analysis of the feasibility of collocating large algal ponds with WWTPs. The goals of this analysis were to determine the available areas by land cover type within radial extents (REs) up to 1.5 miles from WWTPs; to determine the limiting factor for algal production using wastewater; and to investigate the potential algal biomass production at urban, near-urban, and rural WWTPs in Kansas. Over 50% and 87% of the land around urban and rural WWTPs, respectively, was found to be potentially available for algal production. The analysis highlights a trade-off between urban WWTPs, which are generally land-limited but have excess wastewater effluent, and rural WWTPs, which are generally water-limited but have 96% of the total available land. Overall, commercial-scale algae production collocated with WWTPs is feasible; 29% of the Kansas liquid fuel demand could be met with implementation of ponds within 1 mile of all WWTPs and supplementation of water and nutrients when these are limited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.