Aims Lymphatics are essential for cardiac health, and insufficient lymphatic expansion (lymphangiogenesis) contributes to development of heart failure (HF) after myocardial infarction. However, the regulation and impact of lymphangiogenesis in non-ischaemic cardiomyopathy following pressure-overload remains to be determined. Here, we investigated cardiac lymphangiogenesis following transversal aortic constriction (TAC) in C57Bl/6 and Balb/c mice, and in end-stage HF patients. Methods and results Cardiac function was evaluated by echocardiography, and cardiac hypertrophy, lymphatics, inflammation, oedema, and fibrosis by immunohistochemistry, flow cytometry, microgravimetry, and gene expression analysis. Treatment with neutralizing anti-VEGFR3 antibodies was applied to inhibit cardiac lymphangiogenesis in mice. We found that VEGFR3-signalling was essential to prevent cardiac lymphatic rarefaction after TAC in C57Bl/6 mice. While anti-VEGFR3-induced lymphatic rarefaction did not significantly aggravate myocardial oedema post-TAC, cardiac immune cell levels were increased, notably myeloid cells at 3 weeks and T lymphocytes at 8 weeks. Moreover, whereas inhibition of lymphangiogenesis did not aggravate interstitial fibrosis, it increased perivascular fibrosis and accelerated development of left ventricular (LV) dilation and dysfunction. In clinical HF samples, cardiac lymphatic density tended to increase, although lymphatic sizes decreased, notably in patients with dilated cardiomyopathy. Similarly, comparing C57Bl/6 and Balb/c mice, lymphatic remodelling post-TAC was linked to LV dilation rather than to hypertrophy. The striking lymphangiogenesis in Balb/c was associated with reduced cardiac levels of macrophages, B cells, and perivascular fibrosis at 8 weeks post-TAC, as compared with C57Bl/6 mice that displayed weak lymphangiogenesis. Surprisingly, however, it did not suffice to resolve myocardial oedema, nor prevent HF development. Conclusions We demonstrate for the first time that endogenous lymphangiogenesis limits TAC-induced cardiac inflammation and perivascular fibrosis, delaying HF development in C57Bl/6 but not in Balb/c mice. While the functional impact of lymphatic remodelling remains to be determined in HF patients, our findings suggest that under settings of pressure-overload poor cardiac lymphangiogenesis may accelerate HF development.
Neutrophil gelatinase-associated lipocalin (NGAL) is involved in cardiovascular and renal diseases. Gene inactivation of NGAL blunts the pathophysiological consequences of cardiovascular and renal damage. We aimed to design chemical NGAL inhibitors and investigate its effects in experimental models of myocardial infarction (MI) and chronic kidney disease induced by 5/6 nephrectomy (CKD) on respectively 8–12 weeks old C57Bl6/j and FVB/N male mice. Among the 32 NGAL inhibitors tested, GPZ614741 and GPZ058225 fully blocked NGAL-induced inflammatory and profibrotic markers in human cardiac fibroblasts and primary mouse kidney fibroblasts. The administration of GPZ614741 (100 mg/kg/day) for three months, was able to improve cardiac function in MI mice and reduced myocardial fibrosis and inflammation. The administration of GPZ614741 (100 mg/kg/day) for two months resulting to no renal function improvement but prevented the increase in blood pressure, renal tubulointerstitial fibrosis and profibrotic marker expression in CKD mice. In conclusion, we have identified new compounds with potent inhibitory activity on NGAL-profibrotic and pro-inflammatory effects. GPZ614741 prevented interstitial fibrosis and dysfunction associated with MI, as well as tubulointerstitial fibrosis in a CKD model. These inhibitors could be used for other diseases that involve NGAL, such as cancer or metabolic diseases, creating new therapeutic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.