SummaryA mutant called defective glycosylation1-1 (dgl1-1) was identified in Arabidopsis based on a growth defect of the dark-grown hypocotyl and an abnormal composition of the non-cellulosic cell wall polysaccharides. dgl1-1 is altered in a protein ortholog of human OST48 or yeast WBP1, an essential protein subunit of the oligosaccharyltransferase (OST) complex, which is responsible for the transfer in the ER of the N-linked glycan precursor onto Asn residues of candidate proteins. Consistent with the known function of the OST complex in eukaryotes, the dgl1-1 mutation led to a reduced N-linked glycosylation of the ER-resident protein disulfide isomerase. A second more severe mutant (dgl1-2) was embryo-lethal. Microscopic analysis of dgl1-1 revealed developmental defects including reduced cell elongation and the collapse and differentiation defects of cells in the central cylinder. These defects were accompanied by changes in the non-cellulosic polysaccharide composition, including the accumulation of ectopic callose. Interestingly, in contrast to other dwarf mutants that are altered in early steps of the N-glycan processing, dgl1-1 did not exhibit a cellulose deficiency. Together, these results confirm the role of DGL1 in N-linked glycosylation, cell growth and differentiation in plants.
Quantitative trait loci (QTL) analysis was used to identify genes underlying natural variation in primary cell wall composition in Arabidopsis (Arabidopsis thaliana). The cell walls of dark-grown seedlings of a Bay-0 3 Shahdara recombinant inbred line population were analyzed using three miniaturized global cell wall fingerprinting techniques: monosaccharide composition analysis by gas chromatography, xyloglucan oligosaccharide mass profiling, and whole-wall Fourier-transform infrared microspectroscopy. Heritable variation and transgression were observed for the arabinose-rhamnose ratio, xyloglucan sidechain composition (including O-acetylation levels), and absorbance for a subset of Fourier-transform infrared wavenumbers. In total, 33 QTL, corresponding to at least 11 different loci controlling dark-grown hypocotyl length, pectin composition, and levels of xyloglucan fucosylation and O-acetylation, were identified. One major QTL, accounting for 51% of the variation in the arabinose-rhamnose ratio, affected the number of arabinan side chains presumably attached to the pectic polysaccharide rhamnogalacturonan I, paving the way to positional cloning of the first gene underlying natural variation in pectin structure. Several QTL were found to be colocalized, which may have implications for the regulation of xyloglucan metabolism. These results demonstrate the feasibility of combining fingerprinting techniques, natural variation, and quantitative genetics to gain original insight into the molecular mechanisms underlying the structure and metabolism of cell wall polysaccharides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.