Adhesion of bacteria to mucus may favor their persistence within the gut and their beneficial effects to the host. Interactions between pig gastric mucin (PGM) and a natural isolate of Lactococcus lactis (TIL448) were measured at the single-cell scale and under static conditions, using atomic force microscopy (AFM). In parallel, these interactions were monitored at the bacterial population level and under shear flow. AFM experiments with a L. lactis cell-probe and a PGM-coated surface revealed a high proportion of specific adhesive events (60%) and a low level of non-adhesive ones (2%). The strain muco-adhesive properties were confirmed by the weak detachment of bacteria from the PGM-coated surface under shear flow. In AFM, rupture events were detected at short (100−200 nm) and long distances (up to 600−800 nm). AFM measurements on pili and mucus-binding protein defective mutants demonstrated the comparable role played by these two surface proteinaceous components in adhesion to PGM under static conditions. Under shear flow, a more important contribution of the mucus-binding protein than the pili one was observed. Both methods differ by the way of probing the adhesion force, i.e. negative force contact vs. sedimentation and normal-to-substratum retraction vs. tangential detachment conditions, using AFM and flow chamber, respectively. AFM blocking assays with free PGM or O-glycan fractions purified from PGM demonstrated that neutral oligosaccharides played a major role in adhesion of L. lactis TIL448 to PGM. This study dissects L. lactis muco-adhesive phenotype, in relation with the nature of the bacterial surface determinants.
Understanding the nature of mucus-microbe interactions will provide important information that can help to elucidate the mechanisms underlying probiotic adhesion. This study focused on the adhesive properties of the Lactococcus lactis subsp. cremoris IBB477 strain, previously shown to persist in the gastrointestinal tract of germ-free rats. The shear flow-induced detachment of L. lactis cells was investigated under laminar flow conditions. Such a dynamic approach demonstrated increased adhesion to bare and mucin-coated polystyrene for IBB477, compared to that observed for the MG1820 control strain. To identify potential genetic determinants giving adhesive properties to IBB477, the improved high-quality draft genome sequence comprising chromosome and five plasmids was obtained and analysed. The number of putative adhesion proteins was determined on the basis of surface/extracellular localisation and/or the presence of adhesion domains. To identify proteins essential for the IBB477 specific adhesion property, nine deletion mutants in chromosomal genes have been constructed and analysed using adhesion tests on bare polystyrene as well as mucin-, fibronectin- or collagen IV-coated polystyrene plates in comparison to the wild-type strain. These experiments demonstrated that gene AJ89_07570 encoding a protein containing DUF285, MucBP and four Big_3 domains is involved in adhesion to bare and mucin-coated polystyrene. To summarise, in the present work, we characterised the adhesion of IBB477 under laminar flow conditions; identified the putative adherence factors present in IBB477, which is the first L. lactis strain exhibiting adhesive and mucoadhesive properties to be sequenced and demonstrated that one of the proteins containing adhesion domains contributes to adhesion.Electronic supplementary materialThe online version of this article (doi:10.1007/s00253-016-7813-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.