Introduction: Appraising the quality of studies included in systematic reviews combining qualitative, quantitative and mixed methods studies is challenging. To address this challenge, a critical appraisal tool was developed: the Mixed Methods Appraisal Tool (MMAT). The aim of this paper is to present the MMAT. Development: The MMAT was developed in 2006 and was subject to pilot and interrater reliability testing. A revised new version of the MMAT was developed using the results from usefulness testing as well as a literature review on critical appraisal tools and a modified e-Delphi study with methodological experts to identify the core relevant criteria to include in the MMAT. Tool description: The MMAT includes quality criteria of five categories of study designs: (a) qualitative, (b) randomized controlled trial, (c) nonrandomized, (d) quantitative descriptive and (e) mixed methods studies. The MMAT focuses on core relevant methodological criteria and has five criteria per category of study design. Conclusion: The MMAT offers an alternative solution by proposing a unique tool that can appraise the quality of different study designs. Also, by limiting to core criteria, the MMAT can provide a more time efficient appraisal.
The K+-Cl− cotransporter KCC2 is responsible for maintaining low Cl− concentration in neurons of the central nervous system (CNS), essential for postsynaptic inhibition through GABAA and glycine receptors. While no CNS disorders have been associated with KCC2 mutations, loss of activity of this transporter has emerged as a key mechanism underlying several neurological and psychiatric disorders including epilepsy, motor spasticity, stress, anxiety, schizophrenia, morphine-induced hyperalgesia and chronic pain1–9. Recent reports indicate that enhancing KCC2 activity may be the favoured therapeutic strategy to restore inhibition and normal function in pathological condition involving impaired Cl− transport10–12. We designed an assay for high-throughput screening which led to the identification of KCC2 activators that reduce [Cl−]i. Optimization of a first-in-class arylmethylidine family of compounds resulted in a KCC2-selective analog (CLP257) that lowers [Cl−]i. CLP257 restored impaired Cl− transport in neurons with diminished KCC2 activity. The compound rescued KCC2 plasma membrane expression, renormalised stimulus-evoked responses in spinal nociceptive pathways sensitized after nerve injury and alleviated hypersensitivity in a rat model of neuropathic pain. Oral efficacy for analgesia equivalent to that of Pregabalin but without motor impairment was achievable with a CLP257 prodrug. These results validate KCC2 as a druggable target for CNS diseases.
Molecular methods for the rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) are generally based on the detection of an S. aureus-specific gene target and the mecA gene. However, such methods cannot be applied for the direct detection of MRSA from nonsterile specimens such as nasal samples without the previous isolation, capture, or enrichment of MRSA because these samples often contain both coagulasenegative staphylococci (CoNS) and S. aureus, either of which can carry mecA. In this study, we describe a real-time multiplex PCR assay which allows the detection of MRSA directly from clinical specimens containing a mixture of staphylococci in <1 h. Five primers specific to the different staphylococcal cassette chromosome mec (SCCmec) right extremity sequences, including three new sequences, were used in combination with a primer and three molecular beacon probes specific to the S. aureus chromosomal orfX gene sequences located to the right of the SCCmec integration site. Of the 1,657 MRSA isolates tested, 1,636 (98.7%) were detected with the PCR assay, whereas 26 of 569 (4.6%) methicillin-susceptible S. aureus (MSSA) strains were misidentified as MRSA. None of the 62 nonstaphylococcal bacterial species or the 212 methicillin-resistant or 74 methicillinsusceptible CoNS strains (MRCoNS and MSCoNS, respectively) were detected by the assay. The amplification of MRSA was not inhibited in the presence of high copy numbers of MSSA, MRCoNS, or MSCoNS. The analytical sensitivity of the PCR assay, as evaluated with MRSA-negative nasal specimens containing a mixture of MSSA, MRCoNS, and MSCoNS spiked with MRSA, was ϳ25 CFU per nasal sample. This real-time PCR assay represents a rapid and powerful method which can be used for the detection of MRSA directly from specimens containing a mixture of staphylococci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.