In this paper we describe a new technique for general purpose interactive segmentation of N-dimensional images. The user marks certain pixels as "object" or "background" to provide hard constraints for segmentation. Additional soji constraints incorporate both boundary and region information. Graph cuts are used to find the globally optimal segmentation of the N-dimensional image. The obtained solution gives the best balance of boundary and region properties among all segmentations satishing the constraints. The topology o$our segmentation is unrestricted and both "object" and "background" segments may consist of several isolatedparts. Some experimental results are presented in the context ofphotohideo editing and medical image segmentation. We also demonstrate an interesting Gestalt example. A fast implementation of our segmentation method is possible via a new mar-$ow algorithm in [2].
Quantification of myocardial T1 relaxation has potential value in the diagnosis of both ischemic and non-ischemic cardiomyopathies. Image acquisition using the Modified Look-Locker Inversion Recovery technique is clinically feasible for T1 mapping. However, respiratory motion limits its applicability and degrades the accuracy of T1 estimation. The robust registration of acquired inversion recovery images is particularly challenging due to the large changes in image contrast, especially for those images acquired near the signal null point of the inversion recovery and other inversion times for which there is little tissue contrast. In this paper, we propose a novel motion correction algorithm. This approach is based on estimating synthetic images presenting contrast changes similar to the acquired images. The estimation of synthetic images is formulated as a variational energy minimization problem. Validation on a consecutive patient data cohort shows that this strategy can perform robust non-rigid registration to align inversion recovery images experiencing significant motion and lead to suppression of motion induced artifacts in the T1 map.
Abstract. An N-dimensional image is divided into "object" and "background" segments using a graph cut approach. A graph is formed by connecting all pairs of neighboring image pixels (voxels) by weighted edges. Certain pixels (voxels) have to be a priori identified as object or background seeds providing necessary clues about the image content. Our objective is to find the cheapest way to cut the edges in the graph so that the object seeds are completely separated from the background seeds. If the edge cost is a decreasing function of the local intensity gradient then the minimum cost cut should produce an object/background segmentation with compact boundaries along the high intensity gradient values in the image. An efficient, globally optimal solution is possible via standard min-cut/max-flow algorithms for graphs with two terminals. We applied this technique to interactively segment organs in various 2D and 3D medical images.
The assessment of myocardial fibrosis and extra-cellular volume requires accurate estimation of myocardial T1s. While image acquisition using the Modified Look-Locker Inversion Recovery technique is clinically feasible for myocardial T1 mapping, respiratory motion can limit its applicability. Moreover, the conventional T1 fitting approach using the magnitude inversion recovery images can lead to less stable T1 estimates and increased computational cost. In this paper, we propose a novel T1 mapping scheme which is based on phase sensitive image reconstruction and the restoration of polarity of the MR signal after inversion. The motion correction is achieved by registering the reconstructed images after background phase removal. The restored signal polarity of the inversion recovery signal helps the T1 fitting resulting in an improved quality of the T1 map and reducing the computational cost. Quantitative validation on a data cohort of 45 patients proves the robustness of the proposed method against varying image contrast. Compared to the magnitude T1 fitting, the proposed phase sensitive method leads to less fluctuation in T1 estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.