Analogs of 4-(2',4'-difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic acid (I, flobufen), containing a double bond (II, IV, V, VII, VIII) or a methyl group in position 3 (VI) were prepared. Their antiinflammatory activity was evaluated and compared with that of flobufen. None of the mentioned analogs reached the activity of the standard. Isomerization of the unsaturated derivatives is connected with a shift of the double bond, Z-E transformation or lactonization. Reaction conditions and spectra of the compounds prepared are described.
Friedel Crafts reaction of itaconic anhydride (III) with 2,4-difluorobiphenyl (II) afforded unsaturated acid IV which was hydrogenated to give 4-(2',4'-difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic acid (I). A series of functional derivatives and salts of the acid I has been prepared. The antiinflammatory effect of these compounds was compared with that of acid I using selected experimental inflammation models. The analgesic activity in the intraperitoneal irritation test was also evaluated. In the case of (R)-(+)-1-phenylethylamide Vf the ratio of the diastereoisomers was determined by HPLC.
4-(2',4'-Difluorobiphenyl-4-yl)-2-methyl-4-oxobutanoic acid (1, flobufen) is subjected to clinical testing in the treatment of rheumatoid arthritis. Owing to the occurrence of a centre of chirality, the compound exists in two enantiomers, and its major human metabolite, viz. 4-(2',4'-difluorobiphenyl-4-yl)-4-hydroxy-2-methylbutanoic acid isolated in the lactone form (2), possesses two chiral centres, making possible the existence of four stereoisomers. All of the optical isomers of the substances 1 and 2 were prepared. For flobufen (1), the racemate was separated into the stereoisomers by using the salts 3 with R-(+)- or S-(-)-1-phenylethylamine. The pairs of stereoisomers of 2, obtained by reduction of R-(+)-flobufen or the S-(-)-enantiomer, were separated by column chromatography. The physico-chemical parameters of the optical isomers were determined and some biological activities were evaluated in both in vitro and in vivo models.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.