In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.
Understanding the ecological processes and connectivity of chemosynthetic deep-sea ecosystems requires comparative studies. In the Guaymas Basin (Gulf of California, Mexico), the presence of seeps and vents in the absence of a biogeographic barrier, and comparable sedimentary settings and depths offers a unique opportunity to assess the role of ecosystem-specific environmental conditions on macrofaunal communities. Six seep and four vent assemblages were studied, three of which were characterised by common major foundation taxa: vesicomyid bivalves, siboglinid tubeworms and microbial mats. Macrofaunal community structure at the family level showed that density, diversity and composition patterns were primarily shaped by seep-and vent-common abiotic factors including methane and hydrogen sulfide concentrations, whereas vent environmental specificities (higher temperature, higher metal concentrations and lower pH) were not significant. The type of substratum and the heterogeneity provided by foundation species were identified as additional structuring factors and their roles were found to vary according to fluid regimes. At the family level, seep and vent similarity reached at least 58 %. All vent families were found at seeps and each seepspecific family displayed low relative abundances (< 5 %). Moreover, 85 % of the identified species among dominant families were shared between seep and vent ecosystems. This study provides further support to the hypothesis of continuity among deep-sea seep and vent ecosystems.
Highlights► High consistency in species composition across different edifices at the field scale -Lucky Strike. ► Various chemistry domains may influence local abiotic conditions and diversity patterns. ► A "vent field signature" is observed across the three studied fields. ► Distinct abundance and diversity patterns are observed, Menez Gwen being the most different. ► Exogenous factors better explain the dissimilarities in faunal community structure. ► Of particular interest are the current patterns between the three vent fields.
Abstract. Understanding the ecological processes and connectivity of chemosynthetic deep-sea ecosystems requires comparative studies. In the Guaymas Basin (Gulf of California, Mexico), the presence of seeps and vents in the absence of a biogeographic barrier, and comparable sedimentary settings and depths offers a unique opportunity to assess the role of ecosystem-specific environmental conditions on macrofaunal communities. Six seep and four vent assemblages were studied, three of which were characterised by common major foundation taxa: vesicomyid bivalves, siboglinid tubeworms and microbial mats. Macrofaunal community structure at the family level showed that density, diversity and composition patterns were primarily shaped by seep-and vent-common abiotic factors including methane and hydrogen sulfide concentrations, whereas vent environmental specificities (higher temperature, higher metal concentrations and lower pH) were not significant. The type of substratum and the heterogeneity provided by foundation species were identified as additional structuring factors and their roles were found to vary according to fluid regimes. At the family level, seep and vent similarity reached at least 58 %. All vent families were found at seeps and each seepspecific family displayed low relative abundances (< 5 %). Moreover, 85 % of the identified species among dominant families were shared between seep and vent ecosystems. This study provides further support to the hypothesis of continuity among deep-sea seep and vent ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.