Weight gain and adiposity are often attributed to the overconsumption of unbalanced, high-fat diets however, the pattern of consumption can also contribute to associated body weight and compositional changes. The present study explored the rapid alterations in meal patterns of normal-weight rats given continuous access to high-fat diet and examined body weight and composition changes compared to chow fed controls. Ten Long-Evans rats were implanted with subcutaneous microchips for meal pattern analysis. Animals were body weight-matched and separated into two groups: high-fat or chow fed. Each group was maintained on their assigned diet for nine days and monitored for 22-hours each day for meal pattern behavior. Body weight was evaluated every other day, and body composition measures were taken prior and following diet exposure. High-fat fed animals gained more weight and adipose tissue than chow fed controls and displayed a reduced meal frequency and increased meal size. Furthermore, meal size was significantly correlated with the gain of adipose tissue. Together, these results suggest that consumption of a high-fat diet can rapidly alter meal patterns, which in turn contribute to the development of adiposity.
In the present study, we examined meal patterns during and after exposure to the visible burrow system (VBS), a rodent model of chronic social stress, to determine how the microstructure of food intake relates to the metabolic consequences of social subordination. Male Long-Evans rats were housed in mixed-sex VBS colonies (4 male, 2 female) for 2 wk, during which time a dominance hierarchy formed [1 dominant male (DOM) and 3 subordinate males (SUB)], and then male rats were individually housed for a 3-wk recovery period. Controls were individually housed with females during the 2-wk VBS period and had no changes in ingestive behavior compared with a habituation period. During the hierarchy-formation phase of VBS housing, DOM and SUB had a reduced meal frequency, whereas SUB also had a reduced meal size. However, during the hierarchy-maintenance phase of VBS housing, DOM meal patterns did not differ from controls, whereas SUB continued to display a reduced food intake via less frequent meals. During recovery, DOM had comparable meal patterns to controls, whereas SUB had an increased meal size. Hypothalamic neuropeptide Y (NPY) mRNA levels were not different between these groups during the experimental period. Together, the results suggest that exposure to chronic social stress alters ingestive behavior both acutely and in the long term, which may influence the metabolic changes that accompany bouts of stress and recovery; however, these differences in meal patterns do not appear to be mediated by hypothalamic NPY.
Oculoectodermal syndrome (OES) is a rare disease characterized by a combination of congenital scalp lesions and ocular dermoids, with additional manifestations including non-ossifying fibromas and giant cell granulomas of the jaw occurring during the first decade of life. To identify the genetic etiology of OES, we conducted whole-genome sequencing of several tissues in an affected individual. Comparison of DNA from a non-ossifying fibroma to blood-derived DNA allowed identification of a somatic missense alteration in KRAS NM_033360.3(KRAS):c.38G>A, resulting in p.Gly13Asp. This alteration was also observed in the patient's other affected tissues including the skin and muscle. Targeted sequencing in a second, unrelated OES patient identified an NM_033360.3(KRAS):c.57G>C, p.Leu19Phe alteration. Allelic frequencies fell below 40% in all tissues examined in both patients, suggesting that OES is a mosaic RAS-related disorder, or RASopathy. The characteristic findings in OES, including scalp lesions, ocular dermoids, and benign tumors, are found in other mosaic and germline RASopathies. This discovery also broadens our understanding of the spectrum of phenotypes resulting from KRAS alterations. Future research into disease progression with regard to malignancy risk and investigation of RAS-targeted therapies in OES is warranted. KRAS sequencing is clinically available and may also now improve OES diagnostic criteria.
Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq appeared more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use of drugs targeting this pathway in lymphomas.
Intellectual disability (ID) is a heterogeneous clinical entity and includes an excess of males who harbor variants on the X-chromosome (XLID). We report rare FAM50A missense variants in the original Armfield XLID syndrome family localized in Xq28 and four additional unrelated males with overlapping features. Our fam50a knockout (KO) zebrafish model exhibits abnormal neurogenesis and craniofacial patterning, and in vivo complementation assays indicate that the patient-derived variants are hypomorphic. RNA sequencing analysis from fam50a KO zebrafish show dysregulation of the transcriptome, with augmented spliceosome mRNAs and depletion of transcripts involved in neurodevelopment. Zebrafish RNA-seq datasets show a preponderance of 3′ alternative splicing events in fam50a KO, suggesting a role in the spliceosome C complex. These data are supported with transcriptomic signatures from cell lines derived from affected individuals and FAM50A protein-protein interaction data. In sum, Armfield XLID syndrome is a spliceosomopathy associated with aberrant mRNA processing during development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.