Objectives: To evaluate the influence of auditory cues on postural sway in normal-hearing (NH) individuals, hearing-impaired individuals with vestibular impairment (HIVL), or hearing-impaired (HI) individuals without vestibular impairment. Design: Thirty-two participants received a hearing and a vestibular evaluation (vHIT, oVEMP, cVEMP) and then were separated in to three groups (NH, HI, HIVL). All participants had to stand on a force platform in four postural conditions (A: EO/firm, B: EC/firm, C: EO/Foam, D: EC/Foam) under two auditory conditions, with or without auditory cues. Results: Results revealed that first, there was a significant difference between HIVL and both HI and NH groups in conditions C and D without auditory cues. Second, greater improvement for HIVL compared to NH and HI groups in condition C and D was observed with auditory cues. Finally, somatosensory reliance significantly decreased for the HIVL participants using hearing aids compared to NH and HI. Conclusions: Our results suggest that hearing aids benefit for postural control may be modulated by vestibular function.
Noisy galvanic vestibular stimulation (nGVS) has been shown to enhance postural stability during stimulation, and the enhancing effect has been observed to persist for several hours post-stimulation. However, these effects were observed without proper control (sham condition) and the possibility of experimental bias has not been ruled out. The lasting effect of nGVS on postural stability therefore remains in doubt. We investigated the lasting effect of nGVS on postural stability using a control (sham) condition to confirm or infirm the possibility of experimental bias. 28 participants received either nGVS or a sham stimulation. Static postural control was examined before stimulation, immediately after 30 minutes of nGVS and one-hour post-stimulation. Results showed a significant improvement of sway velocity (p<0.05) and path length (p<0.05) was observed following nGVS, as previously shown. A similar improvement of sway velocity (p<0.05) and path length (p<0.05) was observed in sham group and no significant difference was found between nGVS group and sham group (p>0.05), suggesting that the observed postural improvement in nGVS could be due to a learning effect. This finding suggests the presence of experimental bias in the nGVS effect on postural stability, and highlights the need to use a sham condition in the exploration of the nGVS effect so as to disentangle the direct effect of the electrical stimulation from a learning effect. Furthermore, numerous parameters and populations need to be tested in order to confirm or infirm the presence of a real long-lasting effect of nGVS on postural stability.
Balance disorders are common issues for aging populations due to the effects of normal aging on peripheral vestibular structures. These changes affect the results of vestibular function evaluations and make the interpretation of these results more difficult. The objective of this article is to review the current state of knowledge of clinically relevant vestibular measures. We will first focus on otolith function assessment methods cervical-VEMP (cVEMP) and ocular-VEMP (oVEMP), then the caloric and video-head impulse test (vHIT) methods for semicircular canals assessment. cVEMP and oVEMP are useful methods, though research on the effects of age for some parameters are still inconclusive. vHIT results are largely independent of age as compared to caloric stimulation and should therefore be preferred for the evaluation of the semicircular canals function.
The effect of deafness on sensory abilities has been the topic of extensive investigation over the past decades. These investigations have mostly focused on visual capacities. We are only now starting to investigate how the deaf experience their own bodies and body-related abilities. Indeed, a growing corpus of research suggests that auditory input could play an important role in body-related processing. Deafness could therefore disturb such processes. It has also been suggested that many unexplained daily difficulties experienced by the deaf could be related to deficits in this underexplored field. In the present review, we propose an overview of the current state of knowledge on the effects of deafness on body-related processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.