To counteract food fraud, this study aimed at the differentiation of walnuts on a global and regional level using an isotopolomics approach. Thus, the multi-elemental profiles of 237 walnut samples from ten countries and three years of harvest were analyzed with inductively coupled plasma mass spectrometry (ICP-MS), and the resulting element profiles were evaluated with chemometrics. Using support vector machine (SVM) for classification, validated by stratified nested cross validation, a prediction accuracy of 73% could be achieved. Leave-one-out cross validation was also applied for comparison and led to less satisfactory results because of the higher variations in sensitivity for distinct classes. Prediction was still possible using only elemental ratios instead of the absolute element concentrations; consequently, a drying step is not mandatory. In addition, the isotopolomics approach provided the classification of walnut samples on a regional level in France, Germany, and Italy, with accuracies of 91%, 77%, and 94%, respectively. The ratio of the model’s accuracy to a random sample distribution was calculated, providing a new parameter with which to evaluate and compare the performance of classification models. The walnut cultivar and harvest year had no observable influence on the origin differentiation. Our results show the high potential of element profiling for the origin authentication of walnuts.
The aim of this study was to develop a protocol for the authentication of truffles using inductively coupled plasma mass spectrometry. The price of the different truffle species varies significantly, and because the visual differentiation is difficult within the white truffles and within the black truffles, food fraud is likely to occur. Thus, in the context of this work, the elemental profiles of 59 truffle samples of five commercially relevant species were analyzed and the resulting element profiles were evaluated with chemometrics. Classification models targeting the species and the origins were validated using nested cross validation and were able to differentiate the most expensive Tuber magnatum from any other examined truffle. For the black truffles, an overall classification accuracy of 90.4% was achieved, and, most importantly, a falsification of the expensive Tuber melanosporum by Tuber indicum could be ruled out. With regard to the geographical origin, for Italy and Spain, one-versus-all classification models were calculated each to differentiate truffle samples from any other origins by 75.0 and 86.7%, respectively. The prediction was still possible according to an internal mathematical normalization scheme using only the element ratios instead of the absolute element concentrations. The established authentication protocol was successfully tested with an external sample set of five fresh truffles. Our results show the high potential of the element profile for the parallel species and origin authentication of truffles.
Food fraud is a growing problem, especially misdeclaration due to regional price differences offering a wide field. Fast, powerful, and cost-effective analytical methods are therefore essential to counteract food fraud. The isotopolome is suitable for origin discrimination and was analyzed in this study using laser ablation inductively coupled plasma mass spectrometry (ICP-MS). A total of 250 almond samples from six countries and four crop years were analyzed and evaluated by chemometric methods. By using a ratio-based assessment, calibration problems were avoided and an origin predictive accuracy of 85.2 ± 1.2% was achieved. Compared to ICP-MS with solution nebulization, the analysis time could be reduced to about one-fifth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.