Crystallization of strontium fresnoite Sr 2 TiSi 2 O 8 piezoelectric crystals in Sr-Ti-Si-K-Al-O parent glasses is investigated with the aim of showing the influence of composition and crystallization conditions on the microstructure and piezoelectric properties of the resulting glass-ceramic. All the investigated conditions lead to a surface crystallization mechanism that induces a preferential orientation of crystal growth in the glasses. Near the surface, all the glass-ceramics obtained exhibit (002) planes preferentially oriented parallel to their faces. Deeper in the specimens, this preferential orientation is either kept or tilted to (201) after a depth of about 300 µm. The measurement of the charge coefficient d 33 of the glass-ceramic highlights that surface crystallization induces mirror symmetry in the polarization. It reaches 11 to 12 pC/N and is not significantly influenced by the preferential orientation (002) or (201). High temperature XRD shows the stability of the fresnoite phase in the glass-ceramics up to 1000 • C. Mechanical characterization of the glass-ceramics by impulse excitation technique (IET) highlights that the softening of the residual glass leads to a progressive decrease of Young's modulus in the temperature range 600-800 • C. Damping associated to the viscoplastic transition become severe only over 800 • C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.