Extreme haustorial parasites have long captured the interest of naturalists and scientists with their greatly reduced and highly specialized morphology. Along with the reduction or loss of photosynthesis, the plastid genome often decays as photosynthetic genes are released from selective constraint. This makes it challenging to use traditional plastid genes for parasitic plant phylogenetics, and has driven the search for alternative phylogenetic and molecular evolutionary markers. Thus, evolutionary studies, such as molecular clock-based age estimates, are not yet available for all parasitic lineages. In the present study, we extracted 14 nuclear single copy genes (nSCG) from Illumina transcriptome data from one of the “strangest plants in the world”, Hydnora visseri (Hydnoraceae). A ∼15,000 character molecular dataset, based on all three genomic compartments, shows the utility of nSCG for reconstructing phylogenetic relationships in parasitic lineages. A relaxed molecular clock approach with the same multi-locus dataset, revealed an ancient age of ∼91 MYA for Hydnoraceae. We then estimated the stem ages of all independently originated parasitic angiosperm lineages using a published dataset, which also revealed a Cretaceous origin for Balanophoraceae, Cynomoriaceae and Apodanthaceae. With the exception of Santalales, older parasite lineages tend to be more specialized with respect to trophic level and have lower species diversity. We thus propose the “temporal specialization hypothesis” (TSH) implementing multiple independent specialization processes over time during parasitic angiosperm evolution.
The genus Peperomia is one of the largest genera of basal angiosperms, comprising about 1500-1700 pantropically distributed species. The currently accepted infrageneric classification divides Peperomia into nine subgenera and seven sections. This classification is based on some 200 species, primarily using fruit morphology. The monophyly of these infrageneric taxa has never been tested and molecular phylogenetic studies of a representative sampling within Peperomia do not exist. This paper provides the first molecular phylogeny for the genus Peperomia. Monophyletic clades within Peperomia are identified and previously used morphological characters are critically reviewed. We show that the importance of some morphological characters has been overestimated and that some of these characters presumably have evolved several times independently. Only one previously described subgenus has been confirmed to be monophyletic.
Tribe Hydrangeeae of Hydrangeaceae currently contains nine morphologically diverse genera, many of which are well‐known garden ornamentals. Previous studies have shown eight of these genera to be phylogenetically nested within Hydrangea, rendering the latter polyphyletic. To clarify the phylogeny of tribe Hydrangeeae, the present study sequenced four chloroplast regions and ITS for an extensive set of taxa, including the type for all nine genera involved. The resulting phylogenetic hypotheses corroborate the polyphyly of Hydrangea. Since polyphyletic taxa are deemed unacceptable by both sides in the ongoing debate concerning the adherence to strict monophyly in biological classifications, a new (infra)generic classification for tribe Hydrangeeae is proposed. In order to create a stable, evolutionary informative classification a broader circumscription of the genus Hydrangea is proposed, to include all eight satellite genera of the tribe. Such treatment is considered highly preferable to an alternative where Hydrangea is to be split into several morphologically potentially unidentifiable genera. To facilitate the acceptance of the new classification proposed here, and in order to create a classification with high information content, the familiar generic names were maintained as section names where possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.