A select set of highly-cited publications from the National Institutes of Health (NIH) HIV/AIDS Clinical Trials Networks was used to illustrate the integration of time interval and citation data, modeling the progression, dissemination, and uptake of primary research findings. Following a process marker approach, the pace of initial utilization of this research was measured as the time from trial conceptualization, development and implementation, through results dissemination and uptake. Compared to earlier studies of clinical research, findings suggest that select HIV/AIDS trial results are disseminated and utilized relatively rapidly. Time-based modeling of publication results as they meet specific citation milestones enabled the observation of points at which study results were present in the literature summarizing the evidence in the field. Evaluating the pace of clinical research, results dissemination, and knowledge uptake in synthesized literature can help establish realistic expectations for the time course of clinical trials research and their relative impact towards influencing clinical practice.
Background Identifying efficacious interventions for the prevention and treatment of human diseases depends on the efficient development and implementation of controlled clinical trials. Essential to reducing the time and burden of completing the clinical trial lifecycle is determining which aspects take the longest, delay other stages, and may lead to better resource utilization without diminishing scientific quality, safety, or the protection of human subjects. Purpose In this study we modeled time-to-event data to explore relationships between clinical trial protocol development and implementation times, as well as identify potential correlates of prolonged development and implementation. Methods We obtained time interval and participant accrual data from 111 interventional clinical trials initiated between 2006 and 2011 by NIH’s HIV/AIDS Clinical Trials Networks. We determined the time (in days) required to complete defined phases of clinical trial protocol development and implementation. Kaplan-Meier estimates were used to assess the rates at which protocols reached specified terminal events, stratified by study purpose (therapeutic, prevention) and phase group (pilot/phase I, phase II, and phase III/ IV). We also examined several potential correlates to prolonged development and implementation intervals. Results Even though phase grouping did not determine development or implementation times of either therapeutic or prevention studies, overall we observed wide variation in protocol development times. Moreover, we detected a trend toward phase III/IV therapeutic protocols exhibiting longer developmental (median 2 ½ years) and implementation times (>3years). We also found that protocols exceeding the median number of days for completing the development interval had significantly longer implementation. Limitations The use of a relatively small set of protocols may have limited our ability to detect differences across phase groupings. Some timing effects present for a specific study phase may have been masked by combining protocols into phase groupings. Presence of informative censoring, such as withdrawal of some protocols from development if they began showing signs of lost interest among investigators, complicates interpretation of Kaplan-Meier estimates. Because this study constitutes a retrospective examination over an extended period of time, it does not allow for the precise identification of relative factors impacting timing. Conclusions Delays not only increase the time and cost to complete clinical trials, but they also diminish their usefulness by failing to answer research questions in time. We believe that research analyzing the time spent traversing defined intervals across the clinical trial protocol development and implementation continuum can stimulate business process analyses and reengineering efforts that could lead to reductions in the time from clinical trial concept to results, thereby accelerating progress in clinical research.
Rationale, aims, and objectives Large-scale, multi-network clinical trials are seen as a means for efficient and effective utilization of resources with greater responsiveness to new discoveries. Formal structures instituted within the National Institutes of Health (NIH) HIV/AIDS Clinical Trials facilitate collaboration and coordination across networks and emphasize an integrated approach to HIV/AIDS vaccine, prevention, and therapeutics clinical trials. This study examines the joint usage of clinical research sites as means of gaining efficiency, extending capacity, and adding scientific value to the networks. Methods A semi-structured questionnaire covering 8 clinical management domains was administered to 74 (62% of sites) clinical site coordinators at single- and multi-network sites to identify challenges and efficiencies related to clinical trials management activities and coordination with multi-network units. Results Overall, respondents at multi-network sites did not report more challenges than single-network sites, but did report unique challenges to overcome including in the areas of study prioritization, community engagement, staff education and training, and policies and procedures. The majority of multi-network sites reported that such affiliations do allow for the consolidation and cost-sharing of research functions. Suggestions for increasing the efficiency or performance of multi-network sites included streamlining standards and requirements, consolidating protocol activation methods, using a single cross-network coordinating center, and creating common budget and payment mechanisms. Conclusions The results of this assessment provide important information to consider in the design and management of multi-network configurations for the NIH HIV/AIDS Clinical Trials Networks, as well as others contemplating and promoting the concept of multi-network settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.