Objectives: Although automated glioma segmentation holds promise for objective assessment of tumor biology and response, its routine clinical use is impaired by missing sequences, for example, due to motion artifacts. The aim of our study was to develop and validate a generative adversarial network for synthesizing missing sequences to allow for a robust automated segmentation. Materials and Methods: Our model was trained on data from The Cancer Imaging Archive (n = 238 WHO II-IV gliomas) to synthesize either missing FLAIR, T2-weighted, T1-weighted (T1w), or contrast-enhanced T1w images from available sequences, using a novel tumor-targeting loss to improve synthesis of tumor areas. We validated performance in a test set from both the REMBRANDT repository and our local institution (n = 68 WHO II-IV gliomas), using qualitative image appearance metrics, but also segmentation performance with state-of-the-art segmentation models. Segmentation of synthetic images was compared with 2 commonly used strategies for handling missing input data, entering a blank mask or copying an existing sequence. Results: Across tumor areas and missing sequences, synthetic images generally outperformed both conventional approaches, in particular when FLAIR was missing.Here, for edema and whole tumor segmentation, we improved the Dice score, a common metric for evaluation of segmentation performance, by 12% and 11%, respectively, over the best conventional method. No method was able to reliably replace missing contrast-enhanced T1w images. Discussion: Replacing missing nonenhanced magnetic resonance sequences via synthetic images significantly improves segmentation quality over most conventional approaches. This model is freely available and facilitates more widespread use of automated segmentation in routine clinical use, where missing sequences are common.
Both positron emission tomography (PET) and magnetic resonance imaging (MRI), including dynamic susceptibility contrast perfusion (DSC-PWI), are crucial for treatment monitoring of patients with high-grade gliomas. In clinical practice, they are usually conducted at separate time points. Whether this affects their diagnostic performance is presently unclear. To this end, we retrospectively reviewed 38 patients with pathologically confirmed glioblastoma (IDH wild-type) and suspected tumor recurrence after radiotherapy. Only patients who received both a PET–MRI (where DSC perfusion was acquired simultaneously with a FET-PET) and a separate MRI exam (including DSC perfusion) were included. Tumors were automatically segmented into contrast-enhancing tumor (CET), necrosis, and edema. To compare the simultaneous as well as the sequential DSC perfusion to the FET-PET, we calculated Dice overlap, global mutual information as well as voxel-wise Spearman correlation of hotspot areas. For the joint assessment of PET and MRI, we computed logistic regression models for the differentiation between true progression (PD) and treatment-related changes (TRC) using simultaneously or sequentially acquired images as input data. We observed no significant differences between Dice overlap (p = 0.17; paired t-test), mutual information (p = 0.18; paired t-test) and Spearman correlation (p = 0.90; paired t-test) when comparing simultaneous PET–MRI and sequential PET/MRI acquisition. This also held true for the subgroup of patients with >14 days between exams. Importantly, for the diagnostic performance, ROC analysis showed similar AUCs for differentiation of PD and TRC (AUC simultaneous PET: 0.77; AUC sequential PET: 0.78; p = 0.83, DeLong’s test). We found no relevant differences between simultaneous and sequential acquisition of FET-PET and DSC perfusion, also regarding their diagnostic performance. Given the increasing attention to multi-parametric assessment of glioma treatment response, our results reassuringly suggest that sequential acquisition is clinically and scientifically acceptable.
Background: The fifth version of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) in 2021 brought substantial changes. Driven by the enhanced implementation of molecular characterization, some diagnoses were adapted while others were newly introduced. How these changes are reflected in imaging features remains scarcely investigated. Materials and Methods: We retrospectively analyzed 226 treatment-naive primary brain tumor patients from our institution who received extensive molecular characterization by epigenome-wide methylation microarray and were diagnosed according to the 2021 WHO brain tumor classification. From multimodal preoperative 3T MRI scans, we extracted imaging metrics via a fully automated, AI-based image segmentation and processing pipeline. Subsequently, we examined differences in imaging features between the three main glioma entities (glioblastoma, astrocytoma, and oligodendroglioma) and particularly investigated new entities such as astrocytoma, WHO grade 4. Results: Our results confirm prior studies that found significantly higher median CBV (p = 0.00003, ANOVA) and lower median ADC in contrast-enhancing areas of glioblastomas, compared to astrocytomas and oligodendrogliomas (p = 0.41333, ANOVA). Interestingly, molecularly defined glioblastoma, which usually does not contain contrast-enhancing areas, also shows significantly higher CBV values in the non-enhancing tumor than common glioblastoma and astrocytoma grade 4 (p = 0.01309, ANOVA). Conclusions: This work provides extensive insights into the imaging features of gliomas in light of the new 2021 WHO CNS tumor classification. Advanced imaging shows promise in visualizing tumor biology and improving the diagnosis of brain tumor patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.