The Raman and absorption spectra of tetraphenylporphyrin (TPP) were calculated and compared to experiment. The computation was based on the harmonic molecular force field and electric tensors obtained ab initio at the BPW91/6‐31G* level. Good agreement was found between experimental and calculated frequencies and intensities. In order to estimate whether induced optical activity in chiral complexes interferes with the signal of peptide vibrations, the vibrational circular dichroism (VCD) spectra of TPP were simulated. The magnetic field perturbation theory (MFP) and the gauge‐invariant atomic orbitals (GIAO) were used for the simulation. Such spectra were compared to theoretical VCD intensities of a model tripeptide as well to experimental spectra of a complex of the peptide and tetrakis(p‐sulfonatophenyl)porphyrin (TSPP). No significant contribution to VCD signal from the TPP residue was found in experimental spectra. Thus, possible peptide conformational changes occurring during the complexation can be monitored directly in the amide I frequency region. Chirality 12:191–198, 2000. © 2000 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.