BackgroundThe oleaginous yeast Yarrowia lipolytica is increasingly used as alternative cell factory for the production of recombinant proteins. At present, several promoters with different strengths have been developed based either on the constitutive pTEF promoter or on oleic acid inducible promoters such as pPOX2 and pLIP2. Although these promoters are highly efficient, there is still a lack of versatile inducible promoters for gene expression in Y. lipolytica.
ResultsWe have isolated and characterized the promoter of the EYK1 gene coding for an erythrulose kinase. pEYK1 induction was found to be impaired in media supplemented with glucose and glycerol, while the presence of erythritol and erythrulose strongly increased the promoter induction level. Promoter characterization and mutagenesis allowed the identification of the upstream activating sequence UAS1EYK1. New hybrid promoters containing tandem repeats of either UAS1XPR2 or UAS1EYK1 were developed showing higher expression levels than the native pEYK1 promoter. Furthermore, promoter strength was improved in a strain carrying a deletion in the EYK1 gene, allowing thus the utilization of erythritol and erythrulose as free inducer.ConclusionsNovel tunable and regulated promoters with applications in the field of heterologous protein production, metabolic engineering, and synthetic biology have been developed, thus filling the gap of the absence of versatile inducible promoter in the yeast Y. lipolytica.Electronic supplementary materialThe online version of this article (doi:10.1186/s12934-017-0755-0) contains supplementary material, which is available to authorized users.
Erythritol (1,2,3,4-butanetetrol) is a four-carbon sugar alcohol with sweetening properties that is used by the agrofood industry as a food additive. In this study, we demonstrated that metabolic engineering can be used to improve the production of erythritol from glycerol in the yeast Yarrowia lipolytica. The best results were obtained using a mutant that overexpressed GUT1 and TKL1, which encode a glycerol kinase and a transketolase, respectively, and in which EYK1, which encodes erythrulose kinase, was disrupted; the latter enzyme is involved in an early step of erythritol catabolism. In this strain, erythritol productivity was 75% higher than in the wild type; furthermore, the culturing time needed to achieve maximum concentration was reduced by 40%. An additional advantage is that the strain was unable to consume the erythritol it had created, further increasing the process's efficiency. The erythritol productivity values we obtained here are among the highest reported thus far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.