We analyzed DNA duplexes modified at central guanine residues by monofunctional Ru(II) arene complexes [(eta(6)-arene)Ru(II)(en)(Cl)](+) (arene = tetrahydroanthracene or p-cymene, Ru-THA or Ru-CYM, respectively). These two complexes were chosen as representatives of two different classes of Ru(II) arene compounds for which initial studies revealed different binding modes: one that may involve DNA intercalation (tricyclic-ring Ru-THA) and the other (mono-ring Ru-CYM) that may not. Ru-THA is approximately 20 times more toxic to cancer cells than Ru-CYM. The adducts of Ru-THA and Ru-CYM have contrasting effects on the conformation, thermodynamic stability, and polymerization of DNA in vitro. In addition, the adducts of Ru-CYM are removed from DNA more efficiently than those of Ru-THA. Interestingly, the mammalian nucleotide excision repair system has low efficiency for excision of ruthenium adducts compared to cisplatin intrastrand crosslinks.
Hereditary neurodegenerative diseases are connected with the expansion of trinucleotide repetitive sequences in genomic DNA. Molecular diagnosis of these diseases is based on the determination of the triplet repeat length. Currently used methods involve PCR amplification followed by electrophoretic determination of the amplicon size. We propose a novel electrochemical technique based on hybridization of target DNA (tDNA) immobilized at magnetic beads with a reporter probe (RP) complementary to the triplet repeats (12 units per RP). The biotin-labeled RP is detected via an enzyme-linked electrochemical assay involving binding of streptavidin-alkaline phosphatase conjugate and transformation of electroinactive 1-naphthyl phosphate to electroactive 1-naphthol. Pyrimidine residues within sequences flanking the homopurine (GAA)n repeat in tDNA are premodified with osmium tetroxide, 2,2'-bipyridine (Os,bipy), introducing electroactive labels in tDNA. The length of the triplet expansion is calculated from the ratio of the intensities of electrochemical signals of hybridized RP/tDNA-Os,bipy. The normalized signal increases linearly with the repeat length between 0 and about 200 triplet units, allowing for discrimination between normal, premutated, and mutated alleles. Application of this method for the detection of the asymptomatic heterozygous carrier of expanded alleles is demonstrated.
Downstream processes that discriminate between DNA adducts of a third generation platinum antitumor drug oxaliplatin and conventional cisplatin are believed to be responsible for the differences in their biological effects. These different biological effects are explained by the ability of oxaliplatin to form DNA adducts more efficient in their biological effects. In this work conformation, recognition by HMG domain protein and DNA polymerization across the major 1,2-GG intrastrand cross-link formed by cisplatin and oxaliplatin in three sequence contexts were compared with the aid of biophysical and biochemical methods. The following major differences in the properties of the cross-links of oxaliplatin and cisplatin were found: i), the formation of the cross-link by oxaliplatin is more deleterious energetically in all three sequence contexts; ii), the cross-link of oxaliplatin bends DNA slightly but systematically less in all sequence contexts tested; iii), the affinity of HMG domain protein to the cross-link of oxaliplatin is considerably lower independent of the sequence context; and iv), the Klenow fragment of DNA polymerase I pauses considerably more at the cross-link of oxaliplatin in all sequence contexts tested. We have also demonstrated that the chirality at the carrier ligand of oxaliplatin can affect its biological effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.