SummaryFragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5′ UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2β and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2β rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.