Approximately 50% of childhood deafness is caused by mutations in specific genes. Autosomal recessive loci account for approximately 80% of nonsyndromic genetic deafness 1 . Here we report the identification of a new transmembrane serine protease (TMPRSS3; also known as ECHOS1) expressed in many tissues, including fetal cochlea, which is mutated in the families used to describe both the DFNB10 and DFNB8 loci. An 8-bp deletion and insertion of 18 monomeric (∼68-bp) β-satellite repeat units, normally present in tandem arrays of up to several hundred kilobases on the short arms of acrocentric chromosomes, causes congenital deafness (DFNB10). A mutation in a spliceacceptor site, resulting in a 4-bp insertion in the mRNA and a frameshift, was detected in childhood onset deafness (DFNB8). This is the first description of β-satellite insertion into an active gene resulting in a pathogenic state, and the first description of a protease involved in hearing loss.
TMPRSS3 encodes a transmembrane serine protease that contains both LDLRA and SRCR domains and is mutated in non-syndromic autosomal recessive deafness (DFNB8/10). To study its function, we cloned the mouse ortholog which maps to Mmu17, which is structurally similar to the human gene and encodes a polypeptide with 88% identity to the human protein. RT-PCR and RNA in situ hybridization on rat and mouse cochlea revealed that Tmprss3 is expressed in the spiral ganglion, the cells supporting the organ of Corti and the stria vascularis. RT-PCR on mouse tissues showed expression in the thymus, stomach, testis and E19 embryos. Transient expression of wild-type or tagged TMPRSS3 protein showed a primary localization in the endoplasmic reticulum. The epithelial amiloride-sensitive sodium channel (ENaC), which is expressed in many sodium-reabsorbing tissues including the inner ear and is regulated by membrane-bound channel activating serine proteases (CAPs), is a potential substrate of TMPRSS3. In the Xenopus oocyte expression system, proteolytic processing of TMPRSS3 was associated with increased ENaC mediated currents. In contrast, 6 TMPRSS3 mutants (D103G, R109W, C194F, W251C, P404L, C407R) causing deafness and a mutant in the catalytic triad of TMPRSS3 (S401A), failed to undergo proteolytic cleavage and activate ENaC. These data indicate that important signaling pathways in the inner ear are controlled by proteolytic cleavage and suggest: (i) the existence of an auto-catalytic processing by which TMPRSS3 would become active, and (ii) that ENaC could be a substrate of TMPRSS3 in the inner ear.
Two loci for nonsyndromic recessive deafness located on chromosome 21q22.3 have previously been reported, DFNB8 and DFNB10. Recently a gene which encodes a transmembrane serine protease, TMPRSS3 or ECHOS1, was found to be responsible for both the DFNB8 and DFNB10 phenotypes. To determine the contribution of TMPRSS3 mutations in the general congenital/childhood nonsyndromic deaf population we performed mutation analysis of the TMPRSS3 gene in 448 unrelated deaf patients from Spain, Italy, Greece, and Australia who did not have the common 35delG GJB2 mutation. From the 896 chromosomes studied we identified two novel pathogenic mutations accounting for four mutant alleles and at least 16 nonpathogenic sequence variants. The pathogenic mutations were a 1-bp deletion resulting in a frameshift and an amino acid substitution in the LDLRA domain of TMPRSS3. From this and another study we estimate the frequency of TMPRSS3 mutations in our sample as 0.45%, and approximately 0.38% in the general Caucasian childhood deaf population. However, TMPRSS3 is still an important contributor to genetic deafness in populations with large consanguineous families.
In order to identify candidate genes for Down syndrome phenotypes or monogenic disorders that map to human chromosome 21q22.3, we have used genomic sequence and expressed sequence tags mapping to an autosomal recessive deafness (DFNB10) critical region to isolate a novel 2.5-kb cDNA that maps between TFF1 and D21S49. A semi-quantitative reverse transcription/polymerase chain reaction method revealed that UBASH3A gene expression is limited to only a few tissues, with its highest expression in spleen, peripheral blood leukocytes, and bone marrow. The putative 661-amino-acid protein shows considerable homology to a hypothetical protein from Drosophila melanogaster but only domain homologies to other organisms. Both the human and D. melanogaster proteins contain protein-protein interaction domains, viz., SH3 and ubiquitin-associated (UBA) domains, in addition to a novel domain also containing a nuclear localization signal. This is the first protein described containing both UBA and SH3 domains. The gene, thus called UBASH3A, spans 40 kb and is divided into 15 exons. Mutation analysis excluded UBASH3A as being responsible for DFNB10.
Pathogenic mutations in TMPRSS3, which encodes a transmembrane serine protease, cause non-syndromic deafness DFNB8/10. Missense mutations map in the low density-lipoprotein receptor A (LDLRA), scavenger-receptor cysteine-rich (SRCR), and protease domains of the protein, indicating that all domains are important for its function. TMPRSS3 undergoes proteolytic cleavage and activates the ENaC sodium channel in a Xenopus oocyte model system. To assess the importance of this gene in non-syndromic childhood or congenital deafness in Turkey, we screened for mutations affected members of 25 unrelated Turkish families. The three families with the highest LOD score for linkage to chromosome 21q22.3 were shown to harbor P404L, R216L, or Q398X mutations, suggesting that mutations in TMPRSS3 are a considerable contributor to non-syndromic deafness in the Turkish population. The mutant TMPRSS3 harboring the novel R216L missense mutation within the predicted cleavage site of the protein fails to undergo proteolytic cleavage and is unable to activate ENaC, thus providing evidence that pre-cleavage of TMPRSS3 is mandatory for normal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.