contributed equally to this work CD147 is a broadly expressed plasma membrane glycoprotein containing two immunoglobulin-like domains and a single charge-containing transmembrane domain. Here we use co-immunoprecipitation and chemical cross-linking to demonstrate that CD147 speci®cally interacts with MCT1 and MCT4, two members of the proton-linked monocarboxylate (lactate) transporter family that play a fundamental role in metabolism, but not with MCT2. Studies with a CD2±CD147 chimera implicate the transmembrane and cytoplasmic domains of CD147 in this interaction. In heart cells, CD147 and MCT1 co-localize, concentrating at the t-tubular and intercalated disk regions. In mammalian cell lines, expression is uniform but cross-linking with anti-CD147 antibodies caused MCT1, MCT4 and CD147, but not GLUT1 or MCT2, to redistribute together into`caps'. In MCT-transfected cells, expressed protein accumulated in a perinuclear compartment, whereas co-transfection with CD147 enabled expression of active MCT1 or MCT4, but not MCT2, in the plasma membrane. We conclude that CD147 facilitates proper expression of MCT1 and MCT4 at the cell surface, where they remain tightly bound to each other. This association may also be important in determining their activity and location.
SummaryMonocarboxylate transporter (MCT) isoforms 1-4 catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane, whereas MCT8 and MCT10 are thyroid hormone and aromatic amino acid transporters, respectively. The importance of MCTs is becoming increasingly evident as their extensive physiological and pathological roles are revealed. MCTs 1-4 play essential metabolic roles in most tissues with their distinct properties, expression profile, and subcellular localization matching the particular metabolic needs of a tissue. Important metabolic roles include energy metabolism in the brain, skeletal muscle, heart, tumor cells, and T-lymphocyte activation, gluconeogenesis in the liver and kidney, spermatogenesis, bowel metabolism of short-chain fatty acids, and drug transport. MCT8 is essential for thyroid hormone transport across the blood-brain barrier. Genetic perturbation of MCT function may be involved in disease states such as pancreatic b-cell malfunction (inappropriate MCT1 expression), chronic fatigue syndromes (impairment of muscle MCT function), and psychomotor retardation (MCT8 mutation). MCT expression can be regulated at both the transcriptional and post-transcriptional levels. Of particular importance is the upregulation of muscle MCT1 expression in response to training and MCT4 expression in response to hypoxia. The latter is mediated by hypoxia inducible factor 1a and often observed in tumor cells that rely almost entirely on glycolysis for their energy provision. The recent discovery of potent and specific MCT1 inhibitors that prevent proliferation of T-lymphocytes confirms that MCTs may be promising pharmacological targets including for cancer chemotherapy.
The newly cloned proton-linked monocarboxylate transporter MCT3 was shown by Western blotting and immunofluorescence confocal microscopy to be expressed in all muscle fibers. In contrast, MCT1 is expressed most abundantly in oxidative fibers but is almost totally absent in fast-twitch glycolytic fibers. Thus MCT3 appears to be the major MCT isoform responsible for efflux of glycolytically derived lactic acid from white skeletal muscle. MCT3 is also expressed in several other tissues requiring rapid lactic acid efflux. The expression of both MCT3 and MCT1 was decreased by 40 -60% 3 weeks after denervation of rat hind limb muscles, whereas chronic stimulation of the muscles for 7 days increased expression of MCT1 2-3-fold but had no effect on MCT3 expression. The kinetics and substrate and inhibitor specificities of monocarboxylate transport into cell lines expressing only MCT3 or MCT1 have been determined. Differences in the properties of MCT1 and MCT3 are relatively modest, suggesting that the significance of the two isoforms may be related to their regulation rather than their intrinsic properties.Lactic acid is both a major fuel for skeletal muscle ("red" oxidative fibers) and a major metabolic end product ("white" glycolytic muscles). Even oxidative fibers become net lactic acid exporters when oxygen supply cannot meet demand, and glycolysis is stimulated to maintain ATP supplies. Fatigue occurs when lactic acid builds up within the myocyte. This causes intracellular pH (pH i ) to drop, inhibiting both glycolysis and contractile activity (1, 2). In the extreme case further muscle activity is totally prevented, a phenomenon used to advantage by anglers "playing" their fish to exhaustion. The transport of lactic acid out of skeletal muscle fibers is essential if such intracellular accumulation of lactic acid is to be prevented.Better removal of lactic acid from the muscle fibers might improve athletic performance during intense exercise and enable better muscle function and subsequent recovery under pathological conditions such as inherited mitochondrial diseases, hypoxia, and reperfusion following a period of ischemia.Transport of lactic acid into skeletal muscle fibers for oxidation is thought to be mediated by the proton-linked monocarboxylate transporter (MCT) 1 isoform MCT1 whose expression correlates with the oxidative capacity of muscle fibers and is increased following chronic muscle stimulation (3, 4). However, sarcolemmal membranes of muscle fibers that are primarily glycolytic do not contain significant amounts of MCT1 yet transport lactic acid by means of a saturable carrier that is inhibited by known inhibitors of MCT1 (3,5,6). These data imply the presence of another MCT isoform in such glycolytic fibers. MCT kinetics in heart (7-9) and liver (10) cells also imply the existence of other MCT isoforms, and this conclusion has been confirmed by cloning and sequencing studies.The first MCT isoform (MCT1) was cloned from Chinese hamster ovary cells (11) and has since been cloned and sequenced from huma...
Translocation of monocarboxylate transporters MCT1 and MCT4 to the plasma membrane requires CD147 (basigin) with which they remain tightly associated. However, the importance of CD147 for MCT activity is unclear. MCT1 and MCT4 are both inhibited by the cellimpermeant organomercurial reagent p-chloromercuribenzene sulfonate (pCMBS). Here we demonstrate by site-directed mutagenesis that removal of all accessible cysteine residues on MCT4 does not prevent this inhibition. pCMBS treatment of cells abolished co-immunoprecipitation of MCT1 and MCT4 with CD147 and enhanced labeling of CD147 with a biotinylated-thiol reagent. This suggested that CD147 might be the target of pCMBS, and further evidence for this was obtained by treatment of cells with the bifunctional organomercurial reagent fluorescein dimercury acetate that caused oligomerization of CD147. Site-directed mutagenesis of CD147 implicated the disulfide bridge in the Ig-like C2 domain of CD147 as the target of pCMBS attack. MCT2, which is pCMBS-insensitive, was found to co-immunoprecipitate with gp70 rather than CD147. The interaction between gp70 and MCT2 was confirmed using fluorescence resonance energy transfer between the cyan fluorescent protein-and yellow fluorescent proteintagged MCT2 and gp70. pCMBS strongly inhibited lactate transport into rabbit erythrocytes, where MCT1 interacts with CD147, but not into rat erythrocytes where it interacts with gp70. These data imply that inhibition of MCT1 and MCT4 activity by pCMBS is mediated through its binding to CD147, whereas MCT2, which associates with gp70, is insensitive to pCMBS. We conclude that ancillary proteins are required to maintain the catalytic activity of MCTs as well as for their translocation to the plasma membrane.
With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach, immortalizing early adult erythroblasts generating a stable line, which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature, functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level, and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.