ABSTRACT. To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.
Despite scientific concern about Amazon deforestation and the impacts of the Amazon gold rush, few researchers have assessed the long-term impacts of small-scale gold mining on forest cover. This study estimates deforestation from gold mining and analyses the regeneration of abandoned mining areas in the Suriname Amazon. Fieldwork in December 1998 included observations and ecological measurements, as well as qualitative interviews with local miners about mining history and technology. Vegetation cover of abandoned mining sites of different ages was compared with that in old-growth forest. By present estimates, gold miners clear 48-96 km 2 of old-growth forest in Suriname annually. Based on different assumptions about changes in technology and the amount of mining that takes place on previously mined sites, cumulative deforestation is expected to reach 750-2280 km 2 by 2010. Furthermore, the analysis of abandoned mining sites suggests that forest recovery following mining is slow and qualitatively inferior compared to regeneration following other land uses. Unlike areas in nearby old-growth forest, large parts of mined areas remain bare ground, grass, and standing water. The area deforested by mining may seem relatively small, but given the slow forest recovery and the concentration of mining in selected areas, small-scale gold mining is expected to reduce local forest cover and ecosystem services in regions where mining takes place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.