The spatial organization of DNA in the cell nucleus is an emerging key contributor to genomic function. We developed 4C technology (chromosome conformation capture (3C)-on-chip), which allows for an unbiased genome-wide search for DNA loci that contact a given locus in the nuclear space. We demonstrate here that active and inactive genes are engaged in many long-range intrachromosomal interactions and can also form interchromosomal contacts. The active beta-globin locus in fetal liver preferentially contacts transcribed, but not necessarily tissue-specific, loci elsewhere on chromosome 7, whereas the inactive locus in fetal brain contacts different transcriptionally silent loci. A housekeeping gene in a gene-dense region on chromosome 8 forms long-range contacts predominantly with other active gene clusters, both in cis and in trans, and many of these intra- and interchromosomal interactions are conserved between the tissues analyzed. Our data demonstrate that chromosomes fold into areas of active chromatin and areas of inactive chromatin and establish 4C technology as a powerful tool to study nuclear architecture.
BackgroundLong noncoding RNAs (lncRNAs) form an abundant class of transcripts, but the function of the majority of them remains elusive. While it has been shown that some lncRNAs are bound by ribosomes, it has also been convincingly demonstrated that these transcripts do not code for proteins. To obtain a comprehensive understanding of the extent to which lncRNAs bind ribosomes, we performed systematic RNA sequencing on ribosome-associated RNA pools obtained through ribosomal fractionation and compared the RNA content with nuclear and (non-ribosome bound) cytosolic RNA pools.ResultsThe RNA composition of the subcellular fractions differs significantly from each other, but lncRNAs are found in all locations. A subset of specific lncRNAs is enriched in the nucleus but surprisingly the majority is enriched in the cytosol and in ribosomal fractions. The ribosomal enriched lncRNAs include H19 and TUG1.ConclusionsMost studies on lncRNAs have focused on the regulatory function of these transcripts in the nucleus. We demonstrate that only a minority of all lncRNAs are nuclear enriched. Our findings suggest that many lncRNAs may have a function in cytoplasmic processes, and in particular in ribosome complexes.
The shape of the genome is thought to play an important part in the coordination of transcription and other DNA-metabolic processes. Chromosome conformation capture (3C) technology allows us to analyze the folding of chromatin in the native cellular state at a resolution beyond that provided by current microscopy techniques. It has been used, for example, to demonstrate that regulatory DNA elements communicate with distant target genes through direct physical interactions that loop out the intervening chromatin fiber. Here we discuss the intricacies of 3C and new 3C-based methods including the 4C, 5C and ChIP-loop assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.