Spatial working memory entails the ability to keep spatial information active in working memory over a short period of time. To study the areas of the brain that are involved in spatial working memory, a group of stroke patients was tested with a spatial search task. Patients and healthy controls were asked to search through a number of boxes shown at different locations on a touch-sensitive computer screen in order to find a target object. In subsequent trials, new target objects were hidden in boxes that were previously empty. Within-search errors were made if a participant returned to an already searched box; between-search errors occurred if a participant returned to a box that was already known to contain a target item. The use of a strategy to remember the locations of the target objects was calculated as well. Damage to the right posterior parietal and right dorsolateral prefrontal cortex impaired the ability to keep spatial information 'on-line', as was indicated by performance on the Corsi Block-Tapping task and the within-search errors. Moreover, patients with damage to the right posterior parietal cortex, the right dorsolateral prefrontal cortex and the hippocampal formation bilaterally made more between-search errors, indicating the importance of these areas in maintaining spatial information in working memory over an extended time period.
In order to study the influence of intentional and incidental learning conditions on route learning, young adults walked a route through a university building. Half of the participants focused their attention on the route (intentional learning condition), while the other half did not (incidental learning condition). Five tests of spatial knowledge were employed: a route-length-estimation, landmark recognition, landmark ordering, map-drawing and navigation task. The intentional group performed better than the incidental group on the map-drawing and navigation task. No difference between the intentional and incidental group was found on the landmark-recognition and landmark-ordering task. Moreover, the intentional group overestimated the walking distance, while the incidental group underestimated it. These results suggest that route knowledge (landmark recognition and landmark ordering) requires less effortful processing than survey knowledge (developing a map-like representation and actual navigation).
The present study investigated the differential involvement of the right and left hippocampus in various forms of spatial memory: spatial search, positional memory versus object-location binding, and coordinate versus categorical processing. Twenty-five epilepsy patients with selective amygdalohippocampectomy were examined using a sensitive computer paradigm to measure these spatial memory aspects. The patients' performance was compared to a group of thirty healthy controls. The results show that the left amygdalohippocampectomy group performed poorly on the ability to bind together object information to coordinate spatial locations. In turn, the right amygdalohippocampectomy group was impaired in coordinate positional memory. Both patient groups were unimpaired on the spatial search task. These findings are discussed focusing on the "binding device" hypothesis in combination with the cognitive map theory. (JINS, 2004, 10, 907-912.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.