The ATP analog ATPγS inhibits pre-mRNA splicing in vitro, but there have been conflicting reports as to which step of splicing is inhibited by this small molecule and its inhibitory mechanism remains unclear. Here we have dissected the effect of ATPγS on pre-mRNA splicing in vitro. Addition of ATPγS to splicing extracts depleted of ATP inhibited both catalytic steps of splicing. At ATPγS concentrations ≥0.5 mM, precatalytic B complexes accumulate, demonstrating a block prior to or during the spliceosome activation stage. Affinity purification of the ATPγS-stalled B complexes (B ATPγS ) and subsequent characterization of their abundant protein components by 2D gel electrophoresis revealed that B ATPγS complexes are compositionally more homogeneous than B complexes previously isolated in the presence of ATP. In particular, they contain little or no Prp19/CDC5L complex proteins, indicating that these proteins are recruited after assembly of the precatalytic spliceosome. Under the electron microscope, B ATPγS complexes exhibit a morphology highly similar to B complexes, indicating that the ATPγS-induced block in the transformation of the B to B act complex is not due to a major structural defect. Likely mechanisms whereby ATPγS blocks spliceosome assembly at the activation stage, including inhibition of the RNA helicase Brr2, are discussed. Given their more homogeneous composition, B complexes stalled by ATPγS may prove highly useful for both functional and structural analyses of the precatalytic spliceosome and its conversion into an activated B act spliceosomal complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.