Background Students with disabilities are underrepresented in undergraduate science, technology, engineering, and mathematics (STEM) courses. Students with disabilities who engage in self-advocacy earn higher GPAs and are more likely to graduate from college compared to students with disabilities who do not engage in self-advocacy. We utilized Test’s conceptual framework of self-advocacy, which breaks self-advocacy into four components: knowledge of self, knowledge of rights, communication, and leadership to investigate how students with invisible disabilities practice self-advocacy in undergraduate STEM courses. Through a partnership with a disability resource center (DRC), we recruited and interviewed 25 STEM majors who received accommodations for attention-deficit/hyperactivity disorder (ADHD) and/or a specific learning disorder (SLD). Data were collected using semi-structured interviews and analyzed using content analysis. Results We found evidence of all components of Test’s conceptual framework of self-advocacy and operationalize each based on our participants’ experiences. We identified novel components of self-advocacy for students with ADHD/SLD in undergraduate STEM courses, including knowledge of STEM learning contexts and knowledge of accommodations and the process to obtain them, as well as, a novel self-advocacy behavior, filling gaps. Filling gaps involved participants taking action to mitigate a perceived limitation in either their formal accommodations from the DRC or a perceived limitation in the instructional practices used in a STEM course. We also identified beliefs, such as view of disability and agency, which influenced the self-advocacy of our participants. We incorporated the emergent forms of self-advocacy into Test’s conceptual framework to propose a revised model of self-advocacy for students with ADHD/SLD in undergraduate STEM courses. Conclusions We developed a revised conceptual model of self-advocacy for students with ADHD/SLD in undergraduate STEM courses. This conceptual model provides a foundation for researchers who wish to study self-advocacy in undergraduate STEM courses for students with ADHD/SLD in the future. It also offers insights for STEM instructors and service providers about the self-advocacy experiences of students with ADHD/SLD in undergraduate STEM courses. We propose hypotheses for additional study based on our conceptual model of self-advocacy. Implications for research and teaching are discussed.
Self-advocacy is linked to academic success and retention of students with disabilities in college. Students with ADHD and/or specific learning disabilities were interviewed to identify supports and barriers to self-advocacy in undergraduate STEM courses. STEM instructors can be supports or barriers, which influences students’ accommodation use.
To cause the devastating rice blast disease, the hemibiotrophic fungus Magnaporthe oryzae produces invasive hyphae (IH) that are enclosed in a plant-derived interfacial membrane, known as the extra-invasive hyphal membrane (EIHM), in living rice cells. Little is known about when the EIHM is disrupted and how the disruption contributes to blast disease. Here we show that the disruption of the EIHM correlates with the hyphal growth stage in first-invaded susceptible rice cells. Our approach utilized GFP that was secreted from IH as an EIHM integrity reporter. Secreted GFP (sec-GFP) accumulated in the EIHM compartment but appeared in the host cytoplasm when the integrity of the EIHM was compromised. Live-cell imaging coupled with sec-GFP and various fluorescent reporters revealed that the loss of EIHM integrity preceded shrinkage and eventual rupture of the rice vacuole. The vacuole rupture coincided with host cell death, which was limited to the invaded cell with presumed closure of plasmodesmata. We report that EIHM disruption and host cell death are landmarks that delineate three distinct infection phases (early biotrophic, late biotrophic, and transient necrotrophic phases) within the first-invaded cell before reestablishment of biotrophy in second-invaded cells. M. oryzae effectors exhibited infection phase-specific localizations, including entry of the apoplastic effector Bas4 into the host cytoplasm through the disrupted EIHM during the late biotrophic phase. Understanding how infection phase-specific cellular dynamics are regulated and linked to host susceptibility will offer potential targets that can be exploited to control blast disease.
Rice blast disease caused by Magnaporthe oryzae is a devastating disease of cultivated rice worldwide. Infections by this fungus lead to a significant reduction in rice yields and threats to food security. To gain better insight into growth and cell death in M. oryzae during infection, we characterized two predicted M. oryzae metacaspase proteins, MoMca1 and MoMca2. These proteins appear to be functionally redundant and can complement the yeast Yca1 homologue. Biochemical analysis revealed that M. oryzae metacaspases exhibited Ca2+-dependent caspase activity in vitro. Deletion of both MoMca1 and MoMca2 in M. oryzae resulted in reduced sporulation, delay in conidial germination, and attenuation of disease severity. In addition, the double ΔMomca1mca2 mutant strain showed increased radial growth in the presence of oxidative stress. Interestingly, the ΔMomca1mca2 strain showed an increased accumulation of insoluble aggregates compared to the wild-type strain during vegetative growth. Our findings suggest that MoMca1 and MoMca2 promote the clearance of insoluble aggregates in M. oryzae, demonstrating the important role these metacaspases have in fungal protein homeostasis. Furthermore, these metacaspase proteins may play additional roles, like in regulating stress responses, that would help maintain the fitness of fungal cells required for host infection. IMPORTANCE Magnaporthe oryzae causes rice blast disease that threatens global food security by resulting in the severe loss of rice production every year. A tightly regulated life cycle allows M. oryzae to disarm the host plant immune system during its biotrophic stage before triggering plant cell death in its necrotrophic stage. The ways M. oryzae navigates its complex life cycle remain unclear. This work characterizes two metacaspase proteins with peptidase activity in M. oryzae that are shown to be involved in the regulation of fungal growth and development prior to infection by potentially helping maintain fungal fitness. This study provides new insights into the role of metacaspase proteins in filamentous fungi by illustrating the delays in M. oryzae morphogenesis in the absence of these proteins. Understanding the mechanisms by which M. oryzae morphology and development promote its devastating pathogenicity may lead to the emergence of proper methods for disease control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.