Energy-efficient heating and cooling systems as well as intelligent systems for energy distribution are urgently required in order to be able to meet the ambitious goals of the European Union to reduce greenhouse gas emissions. The present article is intended to show that intelligent system extensions for the area of heating, cooling and electricity production for the industrial sector can lead to significant increase in efficiency. For this purpose, a simulation study for the expansion of a combined heat and power (CHP) plant with 2 MW thermal output using a 1.4 MW absorption chiller has been carried out. This shows that a heat-controlled CHP unit can significantly increase its running time. A system model was created for the initial situation and validated with existing measurement data. In the second step, this model was expanded to include the ACM module. The simulation was able to prove that in the event of a system expansion, the run time of the CHP unit can be increased by 35%. In addition to then increase of energy efficiency in the supply system, the analysis also focuses on the efficiency of the energy distribution via thermal networks in an industrial environment. The presented paper therefore also highlights the optimization potentials in the operation of thermal supply networks for industrial applications. For this purpose, a mathematical model has been developed which in addition to the components of the thermal network itself also comprises the producers and consumers. The specific construction of thermal networks for the supply of industrial properties requires adapted solutions for the simulation of such systems. Therefore, amongst other things, in the paper, solutions are shown for the modelling of direct flow local heating networks as well as for the operation of a cascade-controlled pump group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.