Plant disease epidemiology can make a significant contribution for cultivar selection by elucidating the principles of an epidemic under different levels of resistance. For emerging diseases as wheat blast (WB), epidemiological parameters can provide support for better selection of genetic resources. Field experiments were conducted at two locations in Bolivia in 2018–2019 to characterize the temporal dynamics of the disease on 10 cultivars with different levels of reaction to WB. Logistic models best (R2 = 0.70–0.96) fit the disease progress curve in all cultivars followed by Gompertz (R2 = 0.64–0.94), providing additional evidence of a polycyclic disease. Total area under disease progress curve (tAUDPC), final disease severity (Ymax), and logistic apparent infection rates (rL*) were shown to be appropriate epidemiological parameters for describing resistance and cultivar selection. Cultivars that showed a high spike AUDPC (sAUDPC) showed a high leaf AUDPC (lAUDPC). tAUPDC, Ymax, and rL* were positively correlated among them (P < 0.01) and all were negatively correlated with grain weight (P < 0.01). Based on the epidemiological parameters used, cultivars that showed resistance to WB were Urubó, San Pablo, and AN-120, which were previously reported to have effective resistance against the disease under field conditions. The information generated could help breeding programs to make technical decisions about relevant epidemiological parameters to consider prior to cultivar release.
Tar spot is a foliar disease of corn characterized by fungal fruiting bodies that resemble tar spots. The disease emerged in the U.S. in 2015, and severe outbreaks in 2018 caused an economic impact on corn yields throughout the Midwest. Adequate epidemiological surveillance and disease quantification are necessary to develop immediate and long-term management strategies. This study presents a measurement framework that evaluates the disease severity of tar spot using unmanned aircraft systems (UAS)-based plant phenotyping and regression techniques. UAS-based plant phenotypic information, such as canopy cover, canopy volume, and vegetation indices, were used as explanatory variables. Visual estimations of disease severity were performed by expert plant pathologists per experiment plot basis and used as response variables. Three regression methods, namely ordinary least squares (OLS), support vector regression (SVR), and multilayer perceptron (MLP), were used to determine an optimal regression method for UAS-based tar spot measurement. The cross-validation results showed that the regression model based on MLP provides the highest accuracy of disease measurements. By training and testing the model with spatially separated datasets, the proposed regression model achieved a Lin’s concordance correlation coefficient (ρc) of 0.82 and a root mean square error (RMSE) of 6.42. This study demonstrated that we could use the proposed UAS-based method for the disease quantification of tar spot, which shows a gradual spectral response as the disease develops.
Wheat blast is a threat to global wheat production, and limited blast-resistant cultivars are available. The current estimations of wheat spike blast severity rely on human assessments, but this technique could have limitations. Reliable visual disease estimations paired with Red Green Blue (RGB) images of wheat spike blast can be used to train deep convolutional neural networks (CNN) for disease severity (DS) classification. Inter-rater agreement analysis was used to measure the reliability of who collected and classified data obtained under controlled conditions. We then trained CNN models to classify wheat spike blast severity. Inter-rater agreement analysis showed high accuracy and low bias before model training. Results showed that the CNN models trained provide a promising approach to classify images in the three wheat blast severity categories. However, the models trained on non-matured and matured spikes images showing the highest precision, recall, and F1 score when classifying the images. The high classification accuracy could serve as a basis to facilitate wheat spike blast phenotyping in the future.
Quantifying symptoms of tar spot of corn has been conducted through visual-based estimations of the proportion of leaf area covered by the pathogenic structures generated by Phyllachora maydis (stromata). However, this traditional approach is costly in terms of time and labor, as well as prone to human subjectivity. An objective and accurate method, which is also time and labor-efficient, is of an urgent need for tar spot surveillance and high-throughput disease phenotyping. Here, we present the use of contour-based detection of fungal stromata to quantify disease intensity using Red-Green-Blue (RGB) images of tar spot-infected corn leaves. Image blocks (n = 1,130) generated by uniform partitioning the RGB images of leaves, were analyzed for their number of stromata by two independent, experienced human raters using ImageJ (visual estimates) and the experimental stromata contour detection algorithm (SCDA; digital measurements). Stromata count for each image block was then categorized into five classes and tested for the agreement of human raters and SCDA using Cohen's weighted kappa coefficient (κ). Adequate agreements of stromata counts were observed for each of the human raters to SCDA (κ = 0.83) and between the two human raters (κ = 0.95). Moreover, the SCDA was able to recognize “true stromata,” but to a lesser extent than human raters (average median recall = 90.5%, precision = 89.7%, and Dice = 88.3%). Furthermore, we tracked tar spot development throughout six time points using SCDA and we obtained high agreement between area under the disease progress curve (AUDPC) shared by visual disease severity and SCDA. Our results indicate the potential utility of SCDA in quantifying stromata using RGB images, complementing the traditional human, visual-based disease severity estimations, and serve as a foundation in building an accurate, high-throughput pipeline for the scoring of tar spot symptoms.
IntroductionTar spot is a high-profile disease, causing various degrees of yield losses on corn (Zea mays L.) in several countries throughout the Americas. Disease symptoms usually appear at the lower canopy in corn fields with a history of tar spot infection, making it difficult to monitor the disease with unmanned aircraft systems (UAS) because of occlusion.MethodsUAS-based multispectral imaging and machine learning were used to monitor tar spot at different canopy and temporal levels and extract epidemiological parameters from multiple treatments. Disease severity was assessed visually at three canopy levels within micro-plots, while aerial images were gathered by UASs equipped with multispectral cameras. Both disease severity and multispectral images were collected from five to eleven time points each year for two years. Image-based features, such as single-band reflectance, vegetation indices (VIs), and their statistics, were extracted from ortho-mosaic images and used as inputs for machine learning to develop disease quantification models.Results and discussionThe developed models showed encouraging performance in estimating disease severity at different canopy levels in both years (coefficient of determination up to 0.93 and Lin’s concordance correlation coefficient up to 0.97). Epidemiological parameters, including initial disease severity or y0 and area under the disease progress curve, were modeled using data derived from multispectral imaging. In addition, results illustrated that digital phenotyping technologies could be used to monitor the onset of tar spot when disease severity is relatively low (< 1%) and evaluate the efficacy of disease management tactics under micro-plot conditions. Further studies are required to apply and validate our methods to large corn fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.