Se propone un método usando Redes Neuronales Recurrentes para la predicción de datos caóticos, aplicando la Teoría del Caos, para estudiar el comportamiento dinámico de los datos en el espacio multidimensional de las fases, establecer la correlación de los mismos y determinar la dimensión de encaje como base para el entrenamiento de las redes neuronales, así como determinar las características dinámicas del sistema calculando los coeficientes de Lyapunov y la entropía de Kolmorov-Siani, que nos indican el grado de desorden que tiene el sistema, para proyectar la precisión de la predicción. Se usan datos de contaminantes PM2.5 tomados en el centro Histórico de la ciudad de Quito, en intervalos de una hora, entre los años 2005 a 2019. Los resultados determinan que las series de datos corresponden a un sistema caótico (más de un coeficiente positivo de Lyapunov), por lo que se justifica la aplicación de la Teoría del Caos en el análisis de los mismos, dando buenos resultados en las predicciones aplicando los métodos de redes neuronales recurrentes de Elman y Jordan, al comparar las series predichas se demuestran que no presentan diferencias significativas entre ellas, ni con los datos medidos, usando el método de varianza con 0,05 de significancia, el error cuadrático porcentual respecto al rango de variación de los datos es aproximadamente del 5 % en ambos casos. Objetivos: Proponer un método que ayude al entrenamiento de las redes neuronales usando la Teoría del caos, mediante la implementación de la dimensión de encaje en el espacio de las fases.
The tropical Andes constitute a natural barrier between the Pacifi c Ocean and the Atlantic; in these mountains, are a great variety of Ecosystems, defi ned by factors such as orography, winds, humidity, temperature, among others. Some of these Ecosystems have different environmental conditions from tropical ones. In them, there is a great Biodiversity, in some cases endemic and associated with relatively small geographic areas. An example of this biodiversity is the orchids of the genus Dracula, about which discussions are currently generated due to the diffi culty in classifying their members. The present work shows a study where DNA was isolated and sequenced from plant samples obtained from 52 species of orchids of the genus Dracula, which were analyzed using the MEGA7 software. Phylogenetic analysis of the DNA sequences showed a well-resolved topology that refl ects a geographical pattern of several major clades of the Pacifi c and Atlantic watersheds. Geophysical conditions of the Andes have generated greater biodiversity of the genus Dracula on the side of the Pacifi c. Although the species Dracula cordobae and alessandroi reported on both sides of the study site belong to the same clade and show limited mobility through the drier area to the South of the mountain range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.