As with most platyrrhines, the systematics of Ateles is under discussion. In order to help clarify its systematic, we employed chromosomic and molecular characters to analyze the phylogenetic relationship among some species of the genus Ateles. Chromosomic studies were conducted on 14 atelid specimens: eight Ateles from A. paniscus, A. chamek, A. belzebuth and A. geoffroyi, and six Alouatta caraya. Ateles paniscus showed 2N=32, whereas A. chamek, A. belzebuth and A. geoffroyi presented 2N=34, XX/XY (with a submetacentric X and a variable Y) corroborated by male meiosis. Nucleotide sequence variation at the mitochondrial cytochrome c oxidase subunit II gene (COII) was analyzed in ten New World monkey specimens. Parsimony trees showed consistent phylogenetic relationships using both chromosomic forms and mitochondrial COII gene sequences as characters. Particularly, chromosomic phylogenies showed A. hybridus as a divergent taxon from the remaining group, whereas A. chamek, A. belzebuth and A. marginatus form an unresolved clade with A. geoffroyi as sister group.
In light of the multiple sex chromosome systems observed in howler monkeys (Alouatta Lacépède, 1799) a combined cladistic analysis using chromosomal and molecular characters was applied to discuss the possible origin of these systems. Mesoamerican and South American howlers were karyologically compared. FISH analysis using the chromosome painting probes for the #3 and #15 human chromosomes was applied to corroborate the homeology of the sexual systems. We found that the HSA3/15 syntenic association, present in the sex chromosome systems of South American Howlers, is not present in those of Mesoamerican ones. The autosomes involved in the translocation that formed the sexual systems in the Mesoamerican and South American species are different, thus suggesting an independent origin. Parsimony analysis resolved the phylogenetic relationships among howler species, demonstrating utility of the combined approach. A hypothesis for the origin of the multiple sex chromosome systems for the genus is proposed.
Cytogenetic studies showed that a number of New World primate taxa, particularly the genera Alouatta, Aotus, and Callicebus, have highly derived karyotypes. Cytogenetics in these primates, at every level of analysis, has contributed to the recognition of species and revealed that their number was certainly underestimated by researchers relying solely on traditional morphological data. Further attention was drawn to Alouatta and Aotus because they are characterized by translocations of the Y chromosome to autosomes, generating multiple sex chromosome systems. Here we present a report on the hybridization of human chromosome-specific paints on metaphases from 4 individuals originally assigned to Alouatta caraya and 1 individual of Aotuslemurinus. This is only the third karyotype studied with chromosome painting out of more than 10 known karyomorphs in Aotus. The banded chromosomes matched those of karyotype II as defined by Ma et al. [1976a], and we were able to more precisely assign the origin of the sample to A. l. griseimembra. Our results on the Argentinean Alouatta caraya samples were generally comparable to the banding and hybridization pattern of previous studies of A. caraya including the presence of an X1X1X2X2/X1X2Y1Y2 sex chromosome system. The karyotype of the Brazilian Alouatta sample labeled as A. caraya differs from the 3 Argentinean samples by at least 10 chromosome rearrangements. The diploid number, G banding, and hybridization pattern of this female cell line was almost identical to previous painting results on Alouatta guariba guariba. Therefore we must conclude that this cell line is actually from an A. guariba guariba individual. The contribution of cytogenetic tools in identifying species or in this case assigning individuals or cell lines to their precise taxonomic allocation is stressed. Gathering further molecular cytogenetic data on New World primates should be conservation and management priorities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.