o-Quinone methide (1) has been produced in water both thermally and photochemically from (2-hydroxybenzyl)trimethylammonium iodide (2). Michael addition reactions of 1 to various amines, and sulfides, including amino acids and glutathione have been carried out, obtaining alkylated adducts (3-16) in fairly good to quantitative yields. The reaction rate and selectivity of 1 toward nitrogen and sulfur nucleophiles, in competition with the hydration reaction, have been investigated at different pH by laser flash photolysis technique. The observed reactivity spans 7 orders of magnitude on passing from water (kNu = 5.8 M-1 s-1) to the most reactive nucleophile (2.8 x 10(8) M-1 s-1, 2-mercaptoethanol under alkaline conditions). These are the first direct reaction rate measurements of nucleophilic addition to the parent o-quinone methide (1). Competition experiments provided strong kinetic support to the involvement of free 1 as an intermediate in both thermal and photochemical reactions. Furthermore, several alkylation adducts regenerate 1 either by heating (9, 10, 13, and 14) or by irradiation (9, 11-13, 16). Such a thermal and photochemical reversibility of the alkylation process opens a new perspective for the use and application of such adducts as o-QM molecular carriers.
A common way to convert ethanol into chemicals is by upgrading it over oxide catalysts with basic features; this method makes it possible to obtain important chemicals such as 1-butanol (Guerbet reaction) and 1,3-butadiene (Lebedev reaction). Despite their long history in chemistry, the details of the close inter-relationship of these reactions have yet to be discussed properly. Our present study focuses on reactivity tests, in situ diffuse reflectance infrared Fourier transform spectroscopy, MS analysis, and theoretical modeling. We used MgO as a reference catalyst with pure basic features to explore ethanol conversion from its very early stages. Based on the obtained results, we formulate a new mechanistic theory able to explain not only our results but also most of the scientific literature on Lebedev and Guerbet chemistry. This provides a rational description of the intermediates shared by the two reaction pathways as well as an innovative perspective on the catalyst requirements to direct the reaction pathway toward 1-butanol or butadiene.
The photochemistry of some fluorinated 7-amino-4-quinolone-3-carboxylic acids used in therapy as antibacterials and known to be phototoxic has been investigated in water. All of them undergo heterolytic defluorination, and this appears to be a path for the generation of aryl cations in solution. 6-Fluoro derivatives such as norfloxacin (Phi(dec) = 0.06) and enoxacin (Phi(dec) = 0.13) give the corresponding phenols. Insertion of an electron-donating substituent makes defluorination inefficient; thus, ofloxacin, an 8-alkoxy derivative, is found to be rather photostable (Phi(dec) = 0.001) and reacts in part via a process different from defluorination (degradation of the N-alkyl side chain). With a 6,8-difluoro derivative, lomefloxacin, the reaction is more efficient (Phi = 0.55) and selective for position 8. Contrary to the previous cases, the aryl cation undergoes insertion in the neighboring N-ethyl group rather than solvent addition (a carbene-like chemistry). With all of the above fluoroquinolones an intensive triplet-triplet absorption is detected and is quenched by sulfite (k(q) = (1-5) x 10(8) M(-)(1) s(-)(1)). Under this condition, reductive defluorination via the radical anion takes place. The relation of the above chemistry to the phototoxicity of these drugs is commented upon briefly.
Equilibrium geometries, interaction energies, and harmonic frequencies of (NH3)n isomers (n = 2-5) have been computed using correlated calculations (MP2) in conjunction with Dunning's aug-cc-pVXZ (X = D, T, Q) basis sets and the Counterpoise procedure. Whenever available, literature values for the binding energy and geometry of dimers and trimers agree well with our data. Low lying isomers for (NH3)4 and (NH3)5 have been found to have similar binding energies (roughly 16 and 20 kcal/mol for the tetramer and pentamer, respectively), perhaps suggesting the presence of a very smooth energy landscape. Using BSSE corrected forces or freezing the monomer structure to its gas phase geometry have been found to have only a weak impact on the energetic and structural properties of the clusters. The effect of zero-point energy (ZPE) on the relative stability of the clusters has been estimated using harmonic frequencies. The latter also highlighted the presence of vibrational fingerprints for the presence of double acceptor ammonia molecules. Many-body effects for (NH3)n isomers (n = 2-4) have been investigated to explore the possibility of building a pairwise interaction model for ammonia. In the frame of the work presented, we have found the 3-body effect to account for 10-15% of the total interaction energy, whereas the 4-body effects may be neglected as first approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.