Xenarthra (armadillos, sloths, and anteaters) constitutes one of the four major clades of placental mammals. Despite their phylogenetic distinctiveness in mammals, a reference phylogeny is still lacking for the 31 described species. Here we used Illumina shotgun sequencing to assemble 33 new complete mitochondrial genomes, establishing Xenarthra as the first major placental clade to be fully sequenced at the species level for mitogenomes. The resulting data set allowed the reconstruction of a robust phylogenetic framework and timescale that are consistent with previous studies conducted at the genus level using nuclear genes. Incorporating the full species diversity of extant xenarthrans points to a number of inconsistencies in xenarthran systematics and species definition. We propose to split armadillos into two distinct families Dasypodidae (dasypodines) and Chlamyphoridae (euphractines, chlamyphorines, and tolypeutines) to better reflect their ancient divergence, estimated around 42 Ma. Species delimitation within long-nosed armadillos (genus Dasypus) appeared more complex than anticipated, with the discovery of a divergent lineage in French Guiana. Diversification analyses showed Xenarthra to be an ancient clade with a constant diversification rate through time with a species turnover driven by high but constant extinction. We also detected a significant negative correlation between speciation rate and past temperature fluctuations with an increase in speciation rate corresponding to the general cooling observed during the last 15 My. Biogeographic reconstructions identified the tropical rainforest biome of Amazonia and the Guiana Shield as the cradle of xenarthran evolutionary history with subsequent dispersions into more open and dry habitats.
Artículo de publicación ISIA high proportion of plant species is predicted to be threatened with extinction in the near future. However, the threat status of only a small number has been evaluated compared with key animal groups, rendering the magnitude and nature of the risks plants face unclear. Here we report the results of a global species assessment for the largest plant taxon evaluated to date under the International Union for Conservation of Nature (IUCN) Red List Categories and Criteria, the iconic Cactaceae (cacti). We show that cacti are among the most threatened taxonomic groups assessed to date, with 31% of the 1,478 evaluated species threatened, demonstrating the high anthropogenic pressures on biodiversity in arid lands. The distribution of threatened species and the predominant threatening processes and drivers are different to those described for other taxa. The most significant threat processes comprise land conversion to agriculture and aquaculture, collection as biological resources, and residential and commercial development. The dominant drivers of extinction risk are the unscrupulous collection of live plants and seeds for horticultural trade and private ornamental collections, smallholder livestock ranching and smallholder annual agriculture. Our findings demonstrate that global species assessments are readily achievable for major groups of plants with relatively moderate resources, and highlight different conservation priorities and actions to those derived from species assessments of key animal groupsConsejo Nacional de Ciencia y Tecnologia
000000000011820
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.