Background: Tick-borne encephalitis virus (TBEV) is a member of the Flaviviridae family, Flavivirus genus, which includes several important human pathogens. It is responsible for neurological symptoms that may cause permanent disability or death, and, from a medical point of view, is the major arbovirus in Central/Northern Europe and North-Eastern Asia. TBEV tropism is critical for neuropathogenesis, yet little is known about the molecular mechanisms that govern the susceptibility of human brain cells to the virus. In this study, we sought to establish and characterize a new in vitro model of TBEV infection in the human brain and to decipher cell type-specific innate immunity and its relation to TBEV tropism and neuropathogenesis.Method: Human neuronal/glial cells were differentiated from neural progenitor cells and infected with the TBEV-Hypr strain. Kinetics of infection, cellular tropism, and cellular responses, including innate immune responses, were characterized by measuring viral genome and viral titer, performing immunofluorescence, enumerating the different cellular types, and determining their rate of infection and by performing PCR array and qRT-PCR. The specific response of neurons and astrocytes was analyzed using the same approaches after enrichment of the neuronal/glial cultures for each cellular subtype. Results: We showed that infection of human neuronal/glial cells mimicked three major hallmarks of TBEV infection in the human brain, namely, preferential neuronal tropism, neuronal death, and astrogliosis. We further showed that these cells conserved their capacity to mount an antiviral response against TBEV. TBEV-infected neuronal/glial cells, therefore, represented a highly relevant pathological model. By enriching the cultures for either neurons or astrocytes, we further demonstrated qualitative and quantitative differential innate immune responses in the two cell types that correlated with their particular susceptibility to TBEV. Conclusion:Our results thus reveal that cell type-specific innate immunity is likely to contribute to shaping TBEV tropism for human brain cells. They describe a new in vitro model for in-depth study of TBEV-induced neuropathogenesis and improve our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells.
It is well established that persistent viral infection may impair cellular function of specialized cells without overt damage. This concept, when applied to neurotropic viruses, may help to understand certain neurologic and neuropsychiatric diseases. Borna disease virus (BDV) is an excellent example of a persistent virus that targets the brain, impairs neural functions without cell lysis, and ultimately results in neurobehavioral disturbances. Recently, we have shown that BDV infects human neural progenitor cells (hNPCs) and impairs neurogenesis, revealing a new mechanism by which BDV may interfere with brain function. Here, we sought to identify the viral proteins and molecular pathways that are involved. Using lentiviral vectors for expression of the bdv-p and bdv-x viral genes, we demonstrate that the phosphoprotein P, but not the X protein, diminishes human neurogenesis and, more particularly, GABAergic neurogenesis. We further reveal a decrease in pro-neuronal factors known to be involved in neuronal differentiation (ApoE, Noggin, TH and Scg10/Stathmin2), demonstrating that cellular dysfunction is associated with impairment of specific components of the molecular program that controls neurogenesis. Our findings thus provide the first evidence that a viral protein impairs GABAergic human neurogenesis, a process that is dysregulated in several neuropsychiatric disorders. They improve our understanding of the mechanisms by which a persistent virus may interfere with brain development and function in the adult.
Tick-borne encephalitis virus (TBEV) is a member of the Flaviviridae family, Flavivirus genus, which includes several important human pathogens. It is responsible for neurological symptoms that may cause permanent disability or death, and, from a medical point of view, is the major arbovirus in Central/Northern Europe and North-eastern Asia. TBEV tropism is critical for neuropathogenesis, yet, little is known about the molecular mechanisms that govern the susceptibility of human brain cells to the virus. In this study, we sought to establish and characterize a new in vitro model of TBEV infection in the human brain and to decipher cell type-specific innate immunity and its relation to TBEV tropism and neuropathogenesis. We showed that infection of neuronal/glial cultures derived from human fetal neural progenitor cells (hNPCs) mimicked three major hallmarks of TBEV infection in the human brain, namely, preferential neuronal tropism, neuronal death and astrogliosis. We also showed that these cells had conserved their capacity to build an antiviral response against TBEV. TBEV-infected neuronal/glial cells, therefore, represented a highly relevant pathological model. By enriching the cultures in either human neurons or astrocytes, we further demonstrated qualitative and quantitative differential innate immune responses in the two cell types that correlated with their particular susceptibility to TBEV. Our results thus reveal that cell type-specific innate immunity is likely to contribute to shaping TBEV tropism for human brain cells. They offer a new in vitro model to further study TBEV-induced neuropathogenesis and improve our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells.Author summaryTick-borne encephalitis virus (TBEV), a neurotropic Flavivirus that is responsible for encephalitis in humans, is of growing concern in Europe. Indeed, over the last two decades the number of reported cases has continuously increased and the virus has spread into new geographical areas. Whereas it is well established that neurons are the main target of TBEV in the human brain, the mechanisms that underlie this preferential tropism have not yet been elucidated. Here, we used neuronal/glial cells derived from human fetal neural progenitors to establish and characterize a new in vitro pathological model that mimics major hallmarks of TBEV infection in vivo; namely, neuronal tropism, neuronal death and astrogliosis. Using this highly relevant model, we showed that human neurons and astrocytes were both capable of developing an innate immune response against TBEV, but with dissimilar magnitudes that correlated with differential susceptibility to TBEV. Our results thus revealed that TBEV tropism for subsets of human brain cells is likely to depend on cell-type specific innate immunity. This improves our understanding of the mechanisms by which neurotropic viruses target and damage human brain cells and may help guide development of future therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.