Vascular endothelial growth factor (VEGF) and basic (b) fibroblast growth factor (FGF-2/bFGF) are involved in vascular development and angiogenesis. Pulmonary artery smooth muscle cells express VEGF and FGF-2 and are subjected to mechanical forces during pulsatile blood flow. The effect of stretch on growth factor expression in these cells is not well characterized. We investigated the effect of cyclic stretch on the expression of VEGF and FGF-2 in ovine pulmonary artery smooth muscle cells. Primary confluent cells from 6-wk-old lambs were cultured on flexible silicon membranes and subjected to cyclic biaxial stretch (1 Hz; 5–25% stretch; 4–48 h). Nonstretched cells served as controls. Expression of VEGF and FGF-2 was determined by Northern blot analysis. Cyclic stretch induced expression of both VEGF and FGF-2 mRNA in a time- and amplitude-dependent manner. Maximum expression was found at 24 h and 15% stretch (VEGF: 1.8-fold; FGF-2: 1.9-fold). These results demonstrate that mechanical stretch regulates VEGF and FGF-2 gene expression, which could play a role in pulmonary vascular development or in postnatal pulmonary artery function or disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.