Background:The Franciscan Friary in Montella near Avellino in Southern Italy is of special interest because according to historical sources it was founded by St. Francis himself in AD 1221-1222. Human remains of several hundred individuals interred in the cloister walk have been unearthed during two excavation campaigns conducted in 2007-2008 and 2010. The environs of the friary have remained rural since the foundation preventing much modern contamination. The state of preservation of the skeletons is fair to good making a suite of analyses worthwhile. Results:The skeletons have been examined anthropologically and tissue samples have been subjected to radiocarbon dating, stable isotope measurements and trace element analyses by Inductively Coupled Plasma Mass Spectrometry and Cold Vapour Atomic Absorption Spectrometry. Conclusions:The radiocarbon dates are consistent with the historical sources and show that the cemetery in the cloister walk has been in uninterrupted use from the foundation of the friary in AD 1221-1222 and until the cemetery went out of use in AD 1524. The anthropological investigations show that the individuals interred at the friary would have been shorter than other Italians from the same time, and it seems that tuberculosis was more prevalent than leprosy. Isotopic measurements show a mixed agricultural and pastoral diet and none of the individuals were consuming marine protein. Based on the trace element analysis it seems that the people resided mainly at two distinct geographical areas, one of which was Montella. One individual stands out from the rest, because he was born and raised at some third geographical location distinct from Montella and because he sports the second oldest radiocarbon date of AD 1050-1249 (two sigma calibrated range). This date is consistent with the first generation of the founders of the friary-perhaps one of St. Francis' fellow travellers from Assisi.
Variation in the trace element chemistry of cortical bone microstructure is delineated for interred and non-interred human femora. This was done to investigate the range of element concentrations that might occur within single bones, specifically the original laminar bone and later osteons, and its potential for investigating chemical life histories. To do so, femora were chosen from individuals who experienced quite different ways of life over the past two millennia. The distributions of Sr, Ba, Cu, and Pb, mostly in partial (early) and complete (late) osteons, in cross-sections of proximal femora were characterized through Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Absolute calibrations of these data were obtained using solution Inductively Coupled Plasma Mass Spectrometry on adjacent dissolved bulk samples. Chemical life histories were approximated by classifying bone microstructure into four categories: laminar bone and 1st, 2nd, and 3rd generation osteons. This four-part sequence, on average, charts the temporal dimension of an individual’s life. Consistent with recent studies of medieval bones, Sr and Ba are thought to be mainly responsive to diet, presumably related to the consumption of mostly locally produced food, while Cu and Pb do the same for heavy metal exposure often attributable to social status or occupation. No systematic differences in these elements were found between interred and non-interred individuals. The effect of diagenesis on interpretations of life histories based on archaeological bone, therefore, are minimized by plotting element concentrations across cortical bone cross-sections.
Individuals buried in two 17th-18th Century private chapels, each attached to a Franciscan Friary-one in Italy the other in Denmark-have been studied and sampled for trace element analysis. This selection of individuals allows a comparison of the trace element inventory of members of noble families against friars and townspeople, as well as a comparison between two very similar situations in Denmark and Italy. The relevance of this study is to see if and how differences in social status, and therefore likely differences in dietary habits, are reflected in the trace element chemistry of the bones. Samples of cortical and trabecular tissues have been procured from a long bone, preferentially the femur. The samples have been thoroughly decontaminated. 87 samples from 69 individuals have been analysed for Ca, Mn, Fe, Cu, Sr, Ba, and Pb by ICP-MS and Hg by CV-AAS. Sex and age at death have been established by anthropological analysis for all members of the two noble families. We find systematic differences between the noble family members and the friars (or townspeople) in both Italy and Denmark. The noble families are in both cases low in Sr and Ba compared to the friars and townspeople, which is interpreted as a dietary signal resulting from higher meat consumption than in the comparative groups. Lead concentrations are found to be higher in the noble family members than in the comparative groups, and the Pb concentration seems to increase with age in the Italian noble family, where both young and middle-aged individuals were investigated. Mercury concentrations are higher in some of the Italian noble family members compared to friars and townspeople; whereas in Denmark it seems that Hg was equally available to the noble family members and the friars alike. This is the first comprehensive and comparative study of post-medieval noble families in Denmark and Italy. The results show that there are distinct similarities in the trace element distribution patterns in the noble family members irrespective of country, which is tentatively suggested to be due to their higher social status.
The history of medicine abounds in cases of mysterious deaths, especially by infectious diseases, which were probably unresolved because of the lack of knowledge and of appropriate technology. The aim of this study was to exploit contemporary technologies to try to identify the cause of death of a young boy who died from a putative “infection” at the end of the 18th century, and for whom an extraordinarily well-preserved minute bone fragment was available. After confirming the nature of the sample, we used laser microdissection to select the most “informative” area to be examined. Tissue genotyping indicated male gender, thereby confirming the notary’s report. 16S ribosomal RNA sequencing showed that Proteobacteria and Actinobacteria were more abundant than Firmicutes and Bacteroidetes, and that Pseudomonas was the most abundant bacterial genus in the Pseudomonadaceae family. These data suggest that the patient most likely died from Pseudomonas osteomyelitis. This case is an example of how new technological approaches, like laser microdissection and next-generation sequencing, can resolve ancient cases of uncertain etiopathology. Lastly, medical samples may contain a wealth of information that may not be accessible until more sophisticated technology becomes available. Therefore, one may envisage the possibility of systematically storing medical samples for evaluation by future generations.
The Italian saint Francesco Caracciolo died in June 1608 and his body was transported from Agnone in the Abruzzo region to the city of Naples, where he was interred. According to written sources, his body was embalmed, but the embalmment method is unknown. In the present work, four samples of the remains of S. Caracciolo have been analysed for traces of embalmment. No organic compounds usually used for embalmment were found using GC with MS detection. Only low background levels of As were measured using CV-AAS (Cold Vapour Atomic Absorption Spectroscopy). In two samples analysed by CV-AAS, however, very high concentrations of Hg (12.7 mg g -1 and 4.9 mg g -1 ) were measured, these being 100 to 1000 times more than the background Hg levels found in bone tissue of other medieval and Renaissance individuals. Two interpretations seem viable: (1) the high Hg levels are caused by embalmment using Hg-containing compounds; (2) the excess Hg originates from a medical treatment that S. Caracciolo received in his youth, when he was cured of leprosy, or in connection with his illness just prior to his death. The case of excess Hg in the remains of S. Caracciolo has distinct parallels with those of other Renaissance burials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.