Background: Multiple sclerosis (MS) is defined as a demyelinating disorder of the central nervous system, witnessing over the past years a remarkable progress in the therapeutic approaches of the inflammatory process. Yet, the ongoing neurodegenerative process is still ambiguous, under-assessed, and probably under-treated. Atrophy and cognitive dysfunction represent the radiological and clinical correlates of such process. In this study, we evaluated the effect of one specific MS treatment, which is natalizumab (NTZ), on brain atrophy evolution in different anatomical regions and its correlation with the cognitive profile and the physical disability.
Methods:We recruited 20 patients diagnosed with relapsing-remitting MS (RR-MS) and treated with NTZ. We tracked brain atrophy in different anatomical structures using MRI scans processed with an automated image segmentation technique. We also assessed the progression of physical disability and the cognitive function and its link with the progression of atrophy.Results: During the first 2 years of treatment, a significant volume loss was noted within the corpus callosum and the cerebellum gray matter (GM). The annual atrophy rate of the cortical GM, the cerebellum GM, the thalamus, the amygdala, the globus pallidus, and the hippocampus correlated with greater memory impairment. As for the third and fourth years of treatment, a significant atrophy revolved around the gray matter, mainly the cortical one. We also noted an increase of the thalamus volume.
Conclusion:Atrophy in RR-MS patients treated with NTZ is regional and targeting highly cognitive regions mainly of the subcortical gray matter and the cerebellum. The cerebellum atrophy was a marker of physical disability progression. NTZ did not accelerate the atrophy process in MS and may play a neuroprotective role by increasing the thalamus volume.
The rapid spread of the COVID-19 pandemic has raised huge concerns about the prospect of a major health disaster that would result in a huge number of deaths. This anxiety was largely fueled by the fact that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the disease, was so far unknown, and therefore an accurate prediction of the number of deaths was particularly difficult. However, this prediction is of the utmost importance for public health authorities to make the most reliable decisions and establish the necessary precautions to protect people’s lives. In this paper, we present an approach for predicting the number of deaths from COVID-19. This approach requires modeling the number of infected cases using a generalized logistic function and using this function for inferring the number of deaths. An estimate of the parameters of the proposed model is obtained using a Particle Swarm Optimization algorithm (PSO) that requires iteratively solving a quadratic programming problem. In addition to the total number of deaths and number of infected cases, the model enables the estimation of the infection fatality rate (IFR). Furthermore, using some mild assumptions, we derive estimates of the number of active cases. The proposed approach was empirically assessed on official data provided by the State of Qatar. The results of our computational study show a good accuracy of the predicted number of deaths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.