Mastering motor skills is important for children to achieve functional mobility and participate in daily activities. Some studies have identified that students with specific learning disorders (SLD) could have impaired motor skills; however, this postulate and the potential impacts remain unclear. The purpose of the scoping review was to evaluate if SLD children have motor impairments and examine the possible factors that could interfere with this assumption. The sub-objective was to investigate the state of knowledge on the lifestyle behavior and physical fitness of participants with SLD and to discuss possible links with their motor skills. Our scoping review included preregistration numbers and the redaction conformed with the PRISMA guidelines. A total of 34 studies published between 1990 and 2022 were identified. The results of our scoping review reflected that students with SLD have poorer motor skills than their peers. These motor impairments are exacerbated by the complexity of the motor activities and the presence of comorbidities. These results support our sub-objective and highlight the link between motor impairments and the sedentary lifestyle behavior of SLDs. This could lead to deteriorating health and motor skills due to a lack of motor experience, meaning that this is not necessarily a comorbidity. This evidence emphasizes the importance of systematic clinical motor assessments and physical activity adaptations.
Sensorimotor stimulation during the sensitive period is crucial for proper brain development. Kicking sports (KS) training stimulates these sensorimotor functions. The purpose of this study was to investigate if incorporating specific sensorimotor stimulation in mediolateral axis and proprioceptive inputs during KS training will improve the specific sensorimotor performance in adolescents. We assessed stability limits in 13 KS practitioners and 20 control participants. Starting from an upright position, subjects were asked to lean as far as possible (forward, backward, rightward, and leftward). Three sensory conditions were tested: (1) eyes open, (2) eyes closed, and (3) eyes closed while standing on a foam mat. We analyzed the maximal center of pressure excursion and the root means square of the center of pressure displacements. Results showed that KS group had smaller root means square and larger maximal center of pressure excursions than those of control participants in mediolateral axis in all sensory conditions. Furthermore, the results also revealed a significant smaller root means square excursion in KS group under foam mat condition compared to control group ML axis. This study provides evidence that KS training improved the lateral balance control and proprioceptive integration.
This article deepens a reflection on why and how symmetry/asymmetry affects the motor and postural behavior from the neural source, uterine development, child maturation, and how the notion of symmetry/asymmetry has been applied to walking robot design and control. The concepts of morphology and tensegrity are also presented to illustrate how the biological structures have been used in both sciences and arts. The development of the brain and the neuro-fascia-musculoskeletal system seems to be quite symmetric from the beginning of life through to complete maturity. The neural sources of movements (i.e., central pattern generators) are able to produce both symmetric or asymmetric responses to accommodate to environmental constraints and task requirements. Despite the fact that the human development is mainly symmetric, asymmetries already regulate neurological and physiological development. Laterality and sports training could affect natural musculoskeletal symmetry. The plasticity and flexibility of the nervous system allows the abilities to adapt and compensate for environmental constraints and musculoskeletal asymmetries in order to optimize the postural and movement control. For designing humanoid walking robots, symmetry approaches have been mainly used to reduce the complexity of the online calculation. Applications in neurological retraining and rehabilitation should also be considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.