Objectives
Oxidative stress-mediated colistin’s nephrotoxicity is associated with the diminished activity of nuclear factor erythroid 2-related factor 2 (Nrf2) that is primarily correlated with cellular PH domain and leucine-rich repeat protein phosphatase (PHLPP2) levels. This study investigated the possible modulation of PHLPP2/protein kinase B (Akt) trajectory as a critical regulator of Nrf2 stability by rosuvastatin (RST) to guard against colistin-induced oxidative renal damage in rats.
Methods
Colistin (300,000 IU/kg/day; i.p.) was injected for 6 consecutive days, and rats were treated simultaneously with RST orally at 10 or 20 mg/kg.
Key findings
RST enhanced renal nuclear Nrf2 translocation as revealed by immunohistochemical staining to boost the renal antioxidants, superoxide dismutase (SOD) and reduced glutathione (GSH) along with a marked reduction in caspase-3. Accordingly, rats treated with RST showed significant restoration of normal renal function and histological features. On the molecular level, RST effectively decreased the mRNA expression of PHLPP2 to promote Akt phosphorylation. Consequently, it deactivated GSK-3β and reduced the gene expression of Fyn kinase in renal tissues.
Conclusions
RST could attenuate colistin-induced oxidative acute kidney injury via its suppressive effect on PHLPP2 to endorse Nrf2 activity through modulating Akt/GSK3 β/Fyn kinase trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.