This article focuses on proposed semantically enhanced model of decision support system for learning management system (LMS). The model is based on a survey of LMSs and various plugins used in these to improve educational process. Systems based on semantic technologies are capable of integrating heterogeneous data, flexibly changing data schemas, semantic search (using ontologies), and joint knowledge development. The knowledge base that was developed for the proposed system model is presented in an ontological form. Ontology-based applications limit the "fragility" of the software and increase the likelihood of its reuse. In addition, they profitably redirect the efforts previously focused on software development and maintenance of creation and modification of knowledge structures. In the proposed knowledge base, we developed the necessary rules for further recommendations of specialization and courses for users. These recommendations are based on users' data extracted from profiles and user preferences.
Abstract:The purpose of academic advising is to help students with developing educational plans that support their academic career and personal goals, and to provide information and guidance on studies. Planning and management of the students' study path is the main joint activity in advising. Based on a study log of passed courses, we propose to use robust, prototype-based clustering to identify a set of actual study path profiles. Such profiles identify groups of students with similar progress of studies, whose analysis and interpretation can be used for better institutional awareness and to support evidence-based academic advising. A model of automated academic advising system utilizing the possibility to determine the study profiles is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.