The goal of this review is to provide an overview of the current findings on the major carotenoids and their content in pumpkin products and by-products. The content of total carotenoids and the composition of carotenoids in pumpkins depend mainly on the species and cultivar, pedoclimatic conditions, the part of the plant (pulp, peel or seed), extraction procedures and the type of solvent used for extraction. The major carotenoids identified in pumpkins were β-carotene, α-carotene, lutein and zeaxanthin. β-Carotene is the major carotenoid in most pumpkin species. The number and content of total carotenoids are higher when minor carotenoids and ester forms are considered. The use of carotenoids in the development of functional foods has been the topic of many versatile studies in recent years, as they add significant value to foods associated with numerous health benefits. In view of this, pumpkin and pumpkin by-products can serve as a valuable source of carotenoids.
Novel foods are defined as food and food ingredients that have not been used to any significant extent in a particular country. This paper offers a brief overview of the current novel food legislation in European Union, Great Britain, USA, Australia and New Zealand, Canada and China. Prior to sale, food business operators (manufacturers or importers) are required, under different regulations and procedures, to submit information to Food Safety Authority about the product in question for a safety assessment. The approaches and specific information used to assess the safety of novel foods are outlined in national Guidelines. Generally, applicant should provide a detailed description of the novel food (identity of the novel food, production process, compositional data, proposed uses and use levels and anticipated intake of the novel food, history of use of the novel food and/or of its source, absorption, distribution, metabolism and excretion, nutritional information, toxicological information and allergenicity) for the safety assessment and market approval of a novel food.
Innovations in food drying processes are usually aimed at reducing drying time and improving the overall properties of dried products. These are important issues from an economic and environmental point of view and can contribute to the sustainability of the whole process. In this study, the effects of ultrasonic treatment on the drying kinetics of pumpkin pulp are investigated, and mathematical models to predict the drying kinetics are analyzed and optimized. The results show that ultrasonic pretreatment significantly reduces drying time from 451 to 268 min, with optimal processing parameters at 90% of the maximum ultrasonic power and a processing time of 45 min. The total color change of the samples was the lowest at the obtained optimal processing parameters. Based on the values (RMSE and R2) of the investigated mathematical drying models, it was found that the Weibull model is the best fit for the experimental data and is considered suitable for the drying kinetics of ultrasonically pretreated pumpkin samples. In this study, an artificial neural network with 15 neurons in hidden layers was also used to model the drying process in combination with ultrasound pretreatment. The network had a performance of 0.999987 and the mean square error was 8.03 × 10−5, showing how artificial neural networks can successfully predict the effects of all tested process variables on the drying time/moisture ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.