The fate of adsorbed lipid vesicles on solid supports depends on numerous experimental parameters and typically results in the formation of a supported lipid bilayer (SLB) or an adsorbed vesicle layer. One of the poorly understood questions relates to how divalent cations appear to promote SLB formation in some cases. The complexity arises from the multiple ways in which divalent cations affect vesicle-substrate and vesicle-vesicle interactions as well as vesicle properties. These interactions are reflected, e.g., in the degree of deformation of adsorbed vesicles (if they do not rupture). It is, however, experimentally challenging to measure the extent of vesicle deformation in real-time. Herein, we investigated the effect of divalent cations (Mg(2+), Ca(2+), Sr(2+)) on the adsorption of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles onto silicon oxide- and titanium oxide-coated substrates. The vesicle adsorption process was tracked using the quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurement techniques. On silicon oxide, vesicle adsorption led to SLB formation in all cases, while vesicles adsorbed but did not rupture on titanium oxide. It was identified that divalent cations promote increased deformation of adsorbed vesicles on both substrates and enhanced rupture on silicon oxide in the order Ca(2+) > Mg(2+) > Sr(2+). The influence of divalent cations on different factors in these systems is discussed, clarifying experimental observations on both substrates. Taken together, the findings in this work offer insight into how divalent cations modulate the interfacial science of supported membrane systems.
Aberrant macrophage function is implicated in acute and chronic inflammatory settings, and central to diseases such as obesity, atherosclerosis and cancer. However, the transcriptional and epigenomic programs driving macrophage polarization toward distinct phenotypic states are not well understood. Macrophage phenotypes exist on a spectrum, with pro-inflammatory (M1-like) and homeostatic, tissue repair (M2-like) states viewed as polar opposites and relatively stable. The main driver of the M2-like program is a type-2 cytokine, IL4 which signals to STAT6 followed by the Krüppel-like factor 4 (KLF4), a master regulator for numerous M2-specific genes. Reportedly, glucocorticoid (GC) hormones also promote the M2-like state, although the extent to which the phenotypes elicited by such disparate signals overlap is unknown. Interestingly, we discovered that GRIP1, a well-known cofactor for nuclear receptors including GR, serves as a KLF4 coactivator, suggesting that GRIP1 could mediate transcriptional and phenotypic convergence of the IL4- and GC-driven pathways. Gene expression profiling on differentially polarized macrophages revealed a highly significant overlap between M2IL4 and M2GC transcriptomes which was mirrored by the H3K27ac de novo enhancer landscape. Notably, loss of GRIP1 blunted both up-regulation of M2- and downregulation of M1-associated genes irrespective of the signal driving M2 polarization. At the cellular level, polarization with either IL4 or GCs enhanced macrophage phagocytosis relative to non-polarized M0, and did so in a GRIP1-dependent manner. Finally, in the dextran sulphate sodium (DSS)-induced colitis model of intestinal inflammation and tissue damage, GRIP1-cKO mice lacking GRIP1 in myeloid cells, including macrophages, displayed more severe destruction of the colonic mucosa and greater immune cell infiltration into the mucosa and submucosa. Moreover, in total colon RNA, the abundance of many characteristic M2 transcripts was reduced in the cKO mice. Surprisingly, the expression of proinflammatory mediators such as TNF, IL1b and IL23 was unaffected by GRIP1 deletion, suggesting that the more severe disease in the cKO stems primarily from the failure of M2-like resolving macrophage to efficiently mitigate tissue destruction and repair the damage. Together, these findings point to GRIP1 as a crucial regulator of macrophage polarization to the homeostatic state in vitro and in vivo. Presentation: Monday, June 13, 2022 12:15 p.m. - 12:30 p.m., Monday, June 13, 2022 12:30 p.m. - 2:30 p.m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.