Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs.
This study examines how salinity reduction triggers the response of three marine microalgae at the molecular and unicellular levels in terms of chemical, mechanical, and behavioral changes. At the lowest salinity, all microalgal species exhibited an increase in membrane sterols and behaved stiffer. The glycocalyx-coated species Dunaliella tertiolecta was surrounded by a thick actin layer and showed the highest physiological activity, negatively affecting cell motility and indicating the formation of the palmella stage. The lipid content of membrane and the hydrophobicity of cell were largely preserved over a wide range of salinity, confirming the euryhaline nature of Dunaliella. The species with calcite-encrusted theca Tetraselmis suecica exhibited the highest hydrophobicity at the lowest salinity of all cells examined. At salinity of 19, the cells of T. suecica showed the lowest growth, flagellar detachment and the lowest cell speed, the highest physiological activity associated with a dense network of extracellular polymeric substances, and a decrease in membrane lipids, which could indicate develepment of cyst stage. The organosilicate encrusted species Cylindrotheca closterium appeared to be salinity tolerant. It behaved hydrophobically at lower salinity, whereas becoming hydrophilic at higher salinity, which might be related to a molecular change in the released biopolymers. This study highlighted the interplay between chemistry and mechanics that determines functional cell behavior and shows that cell surface properties and behavior could serve as stress markers for marine biota under climate change. Graphical Abstract
Microalgae are considered an accurate indicator of ecosystem perturbations induced by global climate change. The present work aims to investigate the alteration of temperature on surface properties and behaviour of three algal species using the complementary surface methods (electrochemical and atomic force microscopy). The results showed that the temperature-induced response of algae is species-specific due to the structural features of the cell envelope. Wall-less algae experience the largest nanomechanical and chemical change, while algae with silicified walls show the pronounced chemical change in the degree of hydrophobicity. Alterations of surface properties suggest a molecular modification of the algal barrier and cytoskeletal rearrangements due to a change in cell size, while algal morphology reveals no change. The physiological activity of cells showed a different organisation of released extracellular substances in the form of fine fibrillar structures, aggregated particles, and dense networks. Both types of algal responses, physiological activity, and molecular modification of the cell barrier determine the cell adhesion and motility. This study highlights the role of surface properties in cell-substrate and cell–cell interactions, which is important for the understanding of algal behaviour at natural interfaces and the mechanism of algal biofilm and aggregate formation in aquatic systems under the stress. Graphical abstract
Author Contribution Statement: D.D. analyzed and worked on data visualization, coordinated feedback from coauthors, and wrote the manuscript. E.M. coordinated the EMLS, collected data, curated the dataset, analyzed the data, and contributed to writing the manuscript. B.I. conceived the idea for the EMLS, contributed to discussions throughout the study and to the writing of the manuscript. D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.