Tumor endothelial cells have long been regarded as genomically stable and therefore less likely to develop resistance to antiangiogenic therapies. However, recent findings have challenged this notion. We have shown that DNA can be transferred between cells through phagocytosis of apoptotic bodies by adjacent viable cells. Propagation of the ingested DNA is prevented by the activation of the p53-p21 pathway. In this study, we examined whether concomitant transfer of tumor DNA with genes that inactivate the p53 pathway could overcome the barrier to tumor DNA propagation. Our results demonstrate that fibroblasts and endothelial cells are capable of acquiring and replicating tumor DNA when the apoptotic tumor cells contain the SV40 large T antigen. Analysis of the tumor stroma of xenotransplanted tumors in severe combined immunodeficient mice revealed that a sub-population of the endothelial cells contained tumor DNA. These cells maintained the ability to form functional vessels in an in vivo assay and concurrently express tumor-encoded and endothelial-specific genes. Malignant and non-malignant cells are dependent on a functional blood circulation for the supply of oxygen and nutrients.1 Evidence from transgenic mouse models demonstrate that tumors initially lack the ability to induce blood vessel formation but subsequently acquire the capacity to recruit vessels from the adjoining stroma.2 This 'angiogenic switch' coincides with increase in tumor mass and invasiveness. Tumor cells secrete a plethora of angiogenic factors that induce sprouting angiogenesis (i.e. the formation of new capillaries from pre-existing capillaries) and the differentiation of hematopoietic stem cells into endothelial cells, which then contribute to tumor vessel formation. 3A potential advantage in targeting the endothelial cells of the tumor vasculature is that these cells are regarded as diploid and genetically stable. However, recent data have challenged this notion. Uveal melanomas have been reported to form their own circulatory network by the formation of vascular channels lined by tumor cells. 4 These vasculogenic channels apparently link directly to normal vessels without evidence of angiogenesis. Streubel et al.5 analyzed the cellular origin of the microvascular endothelial cells of B-cell lymphomas in patients. Chromosomal translocations specific for the tumor cells were detected in the tumor endothelium, suggesting a close relationship between the two cell types. Furthermore, analyses of human tumors transplanted in severe combined immunodeficient (SCID) mice demonstrate that the endothelial cells of solid human tumors grown in mice are genetically unstable and exhibit aneuploidy with multiple chromosomes and centrosomes. 6 Cumulatively, these studies potentially imply that tumor endothelial cells exhibit genetic instability albeit the mechanisms by which genetic alterations are induced are presently unclear.Our previous studies and those of others have demonstrated that viral and chromosomal DNA can be efficiently transferred be...
We have previously shown that four markers spanning the 3p24-p21.3 region, THRB, AP20R, D3S1029, and D3S32, were regularly eliminated from three human chromosome 3 (chr3)/mouse microcell hybrids (MCHs) during tumor growth in SCID mice. In an attempt to narrow down the eliminated region, we have studied 22 new SCID mouse tumors derived from 5 MCH lines carrying human chr3. They were analyzed by fluorescence in situ hybridization (FISH), Southern blotting, and polymerase chain reaction (PCR). MCHs that carried human chr1, chr8, chr13, and chr17 were examined as controls. We could identify a common eliminated region (CER) at 3p21.3, bordered distally by D3S1260 and proximally by D3S643/D3F15S2. Eight of 53 chr3-specific PCR markers, AP20R, D3S966, D3S3559, D3S1029, WI-7947, D3S2354, AFMb362wb9, and D3S32. were localized within the CER. This finding is consistent with the notion that a tumor suppressor gene may be located in this area, as suggested by frequent loss of heterozygosity (LOH) within this region observed in several types of solid tumors.
We have previously shown that inoculation of human chromosome 3 (chr3)/A9 mouse fibrosarcoma microcell hybrids (MCHs) into severely combined immunodeficient (SCID) mice was followed by the regular elimination of certain 3p regions, whereas a 3q region was retained even after prolonged mouse passage. Using this approach, referred to as the elimination test (Et), we identified a common eliminated region (CER) of about 7 cM at 3p22-p21.3 that was absent in all tumors generated from five MCHs. A second frequently eliminated region (FER, originally called ER2) was found at 3p21.1-p14.2. These segments have been reported to be frequently deleted in a variety of carcinomas. In the following experiments, we have identified at the centromeric border of CER a common eliminated region 1 (CER1) of about 1.6 cM. We now report the results of more detailed analyses of the original tumor panel that contained 30 SCID mouse tumors. Using polymerase chain reaction and chromosome reverse painting, we have identified at the telomeric border of CER a second common eliminated region (designated as CER2). CER2 is flanked distally by RH94338 and proximally by SHGC-154057. The size of CER2 is about 1 Mb, according to the Homo Sapiens Complete Genome databases at EMBL, and is located about 0.5 Mb centromeric to the known homozygous deletion region, identified in lung cancer. Remarkably, two chemokine-receptor genes (CCRs), CCR8 and CX3CR1, are located within CER2, whereas seven CCRs were found within CER1.
The rat provides valuable and sometimes unique models of human complex diseases. To fully exploit the rat models in biomedical research, it is important to have access to detailed knowledge of the rat genome organization as well as its relation to the human genome. Rat Chromosome 10 (RNO10) harbors several important cancer-related genes. Deletions in the proximal part of RNO10 were repeatedly found in a rat model for endometrial cancer. To identify functional and positional candidate genes in the affected region, we used radiation hybrid (RH) mapping and single- and dual-color fluorescence in situ hybridization (FISH) techniques to construct a detailed chromosomal map of the proximal part of RNO10. The regional localization of 14 genes, most of them cancer-related ( Grin2a, Gspt1, Crebbp, Gfer, Tsc2, Tpsb1, Il9r, Il4, Irf1, Csf2, Sparc, Tp53, Thra1, Gh1), and of five microsatellite markers ( D10Mit10, D10Rat42, D10Rat50, D10Rat72, and D10Rat165) was determined on RNO10. For a fifteenth gene, Ppm1b, which had previously been assigned to RNO10, the map position was corrected to RNO6q12-q13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.