Departing from the mainstream literature on European monetary integration, we acknowledge the interdependence of economic sentiment synchronisation and business cycle co‐movements for 17 European countries and the euro area (EA). Building on national accounts and survey data, we find non‐negligible evidence that sentiment cycles are the driving force behind general economic cycle synchronization. We demonstrate that recent EA acquisitions have witnessed an intensification of cycle synchronization with the EA core after the introduction of a common currency, corroborating the beneficial effects of the Eurosystem. Our results show a certain degree of dependence on the business cycle. The synchronization of 17 examined countries vis‐à‐vis the EA is mostly of equal magnitude or even more intensive during recessions than in expansions. In other words, the common monetary policy of the European Central Bank (ECB) should be able to effectively act as a countercyclical tool when an individual economy is facing a recession.
We utilize two specific ensemble learning methods (ensemble linear regression model (LM) and random forest (RF)), in a data-rich environment of the Newsbank media database to scrutinize the possibilities of enhancing the predictive accuracy of Economic Policy Uncertainty (EPU) index. LM procedure mostly outperforms both RF-based assessments and the original EPU index. We find that our LM estimate behaves more like an uncertainty indicator that the RF-based uncertainty or the original EPU index. It is strongly correlated to other standard uncertainty proxies, it is more countercyclical, and it has more pronounced leading properties. Finally, we considerably widen the scope of search terms included in the calculation of EPU index. We find that the predictive precision of EPU index can be considerably increased using a more diversified set of uncertainty-related terms than the original EPU framework.
Nezaposlenost kao jedan od važnih
ekonomskih problema zaokuplja pažnju brojnih istraživača, posebice od globalne
financijske krize koja je uzrokovala visoke i trajne stope nezaposlenosti u
Europskoj uniji (EU). Cilj ovoga rada je utvrditi značajne makroekonomske odrednice
nezaposlenosti u EU. U tu svrhu u
radu je provedena dinamička panel analiza za svih 28 članica EU u razdoblju od
1995. do 2016. godine. Sveobuhvatnošću provedene analize utemeljene na
ekonomskoj teoriji, koja uključuje svih 28 zemalja članica EU kroz do sada
najduži promatrani period promatranja, ispitivanje homogenosti odrednica unutar
EU te odrednice nezaposlenosti mladih, ovim radom se doprinosi postojećoj
literaturi. Analizom je potvrđena značajnost jaza proizvodnje, investicija,
realne dugoročne kamatne stope, inflacije i nezaposlenosti u prethodnom
razdoblju kao odrednica nezaposlenosti u čitavoj EU, pri čemu su samo realna
kamatna stopa i nezaposlenost iz prethodnog razdoblja robusne u svim modelima. Odrednice
nezaposlenosti u starim i novim zemljama članicama pokazale su se relativno
homogenima. Stopa rasta proizvodnje ima značajan negativan učinak samo na
nezaposlenost mladih. Veza jaza nezaposlenosti i jaza proizvodnje dodatno je
istražena statičkom panel analizom te se zaključuje kako je Okunov zakon u EU
valjan, odnosno postoji negativna veza između jaza nezaposlenosti i jaza proizvodnje.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.