The paper discusses the structural behaviour of concrete-filled steel tube columns (CFT) when applied to the top-down construction method as temporary internal supports for ceilings. Their ultimate capacity to take into account the actual boundary conditions of the column is essential for successful application in construction. The paper presents the full-scale in situ testing of four slender specimens with variable D/t ratios under concentric axial loading. The CFT columns were supported on the previously jacked concrete piles. In addition, detailed finite element numerical models in ABAQUS and PLAXIS computer programs were developed. The models include the nonlinear behaviour of materials and the nonlinear behaviour of soil. The soil–pile–column interaction and impact of the CFT column–pile connection stiffness on global column stability were considered. The numerical model was validated by comparison with the experimental results. In conclusion, the coefficient for the effective buckling length of the studied columns is proposed. Finally, the experimental results of the critical buckling forces were compared with widely used international design codes Eurocode 4-EC4, American standard-ACI and the Australian standard-AS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.